Recall the double angle identity,
sin(2x) = 2 sin(x) cos(x)
Then we can write
sin(9x) cos(9x) = 1/2 sin(2 • 9x) = 1/2 sin(18x)
Then
∫ sin(9x) cos(9x) dx
= 1/2 ∫ sin(18x) dx
= -1/2 • 1/18 cos(18x) + C
= -1/36 cos(18x) + C
though you could continue with another double angle identity,
cos(2x) = cos²(x) - sin²(x)
to rewrite the antiderivative as
= -1/36 (cos²(9x) - sin²(9x)) + C
= 1/36 (sin²(9x) - cos²(9x)) + C