Answer:
Perimeter of ΔPRS = 35.91 units
Explanation:
From the figure attached,
By applying triangle sum theorem in the given triangle PRS,
m∠P + m∠R + m∠S = 180°
45° + m∠R + 60° = 180°
m∠R = 75°
By applying sine rule,
![\frac{\text{sinP}}{RS}= \frac{\text{sinS}}{PR}=\frac{\text{sinR}}{PS}](https://img.qammunity.org/2022/formulas/mathematics/high-school/kncap47mgo1h28998mbm1aqww0ggly5213.png)
![\frac{\text{sin}(45^(\circ))}{10}= \frac{\text{sin}(60^(\circ))}{PR}=\frac{\text{sin}(75^(\circ))}{PS}](https://img.qammunity.org/2022/formulas/mathematics/high-school/xresmsj38708qjvul2emjhild6o9vdk8lt.png)
![\frac{\text{sin}(45^(\circ))}{10}= \frac{\text{sin}(60^(\circ))}{PR}](https://img.qammunity.org/2022/formulas/mathematics/high-school/dha46glr62qke9hbd75goscdlzua109oox.png)
PR = 12.25 units
![\frac{\text{sin}(45^(\circ))}{10}=\frac{\text{sin}(75^(\circ))}{PS}](https://img.qammunity.org/2022/formulas/mathematics/high-school/s6zt24x5hzve9un1se640v1qn67vse92h2.png)
PS = 13.66 units
Perimeter of triangle PRS = PR + PS + RS
= 12.25 + 13.66 + 10
= 35.91