183k views
0 votes
What is the solution to the inequality?

Express yourself in interval notation.​

What is the solution to the inequality? Express yourself in interval notation.​-example-1
User Zugaldia
by
2.9k points

1 Answer

14 votes

Answer:


\begin{bmatrix}\mathrm{Solution:}\:&\:x\ge (20)/(23)\:\\ \:\mathrm{Decimal:}&\:x\ge \:0.86956\dots \\ \:\mathrm{Interval\:Notation:}&\:[(20)/(23),\:\infty \:)\end{bmatrix}

Explanation:


-(2)/(3)\left(2x-(1)/(2)\right)\le (1)/(5)x-1

Expand
-(2)/(3)\left(2x-(1)/(2)\right)\le (1)/(5)x-1
-(4)/(3)x+(1)/(3)


-(4)/(3)x+(1)/(3)\le (1)/(5)x-1


\mathrm{Subtract\:}(1)/(3)\mathrm{\:from\:both\:sides}


-(4)/(3)x+(1)/(3)-(1)/(3)\le (1)/(5)x-1-(1)/(3)


Simplify


-(4)/(3)x\le \:-(4)/(3)+(1)/(5)x


\mathrm{Subtract\:}(1)/(5)x\mathrm{\:from\:both\:sides}


-(4)/(3)x-(1)/(5)x\le \:-(4)/(3)+(1)/(5)x-(1)/(5)x


Simplify


-(23)/(15)x\le \:-(4)/(3)


\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}


\left(-(23)/(15)x\right)\left(-1\right)\ge \left(-(4)/(3)\right)\left(-1\right)


\mathrm{Simplify}


(23)/(15)x\ge (4)/(3)


\mathrm{Multiply\:both\:sides\:by\:}15


15\cdot (23)/(15)x\ge (4\cdot \:15)/(3)


Simplify


23x\ge \:20


\mathrm{Divide\:both\:sides\:by\:}23


(23x)/(23)\ge (20)/(23)


\mathrm{Simplify}

Hence the final answer is
\begin{bmatrix}\mathrm{Solution:}\:&\:x\ge (20)/(23)\:\\ \:\mathrm{Decimal:}&\:x\ge \:0.86956\dots \\ \:\mathrm{Interval\:Notation:}&\:[(20)/(23),\:\infty \:)\end{bmatrix}

User Pradep
by
3.3k points