142k views
0 votes
Evaluate the given integral by changing to polar coordinates.

Integar sin(x2 + y2) dA R
where R is the region in the first quadrant between the circles with center the origin and radii 1 and 5.

User Zijun
by
5.1k points

1 Answer

0 votes

In polar coordinate, R is the set of points

1 < r < 5 and 0 < θ < π/2

So the integral is


\displaystyle\iint_R\sin(x^2+y^2)\,\mathrm dA = \int_0^(\frac\pi2)\int_1^5 r\sin(r^2)\,\mathrm dr\,\mathrm d\theta


=\displaystyle\frac\pi2\int_1^5 r\sin(r^2)\,\mathrm dr


=\displaystyle\frac\pi4\int_1^5 2r\sin(r^2)\,\mathrm dr


=\displaystyle\frac\pi4\int_1^(25) \sin(s)\,\mathrm ds

(where s = r ²)


=\displaystyle-\frac\pi4\cos(s)\bigg|_1^(25)= \boxed{\frac\pi4 (\cos(1) - \cos(25))}

User Chesnay Schepler
by
3.9k points