Answer:
34, 650
Explanation:
Given that,
The word = Mississippi
To find,
No. of different ways in which the letters of this word can be arranged = ?
Procedure:
Using the permutation rule as it is the case of repetition of identical items for finding the possibilities.
No. of letters in 'Mississippi' = 11
Letter 'i' appears = 4 times
Letter 's' appears = 4 times
Letter 'm' appears = 1 time
Letter 'p' appears = 2 times
So,
No. of possibilities = 11 ! รท (4 ! 4 ! 1 ! 2 !)
= (11 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 *1)/(4 * 3 *2 * 1)(4 * 3 *2 * 1)(1)(2 * 1)
= 11 * 10 * 9 * 7 * 5
= 34,650