Answer:
p^3 - 7p^2q^2 + 2pq
Explanation:
3pq +5p^2q^2 + p^3 = p^3 + 5p^2q^2 + 3pq
Let the number be x.
x + p^3 + 5p^2q^2 + 3pq + p^3 - pq
= 3p^3 - 2p^2q^2 + 4pq
x + p^3 + p^3 + 5p^2q^2 + 3pq - pq
= 3p^3 - 2p^2q^2 + 4pq
x + 2p^3 + 5p^2a^2 + 2pq
= 3p^3 - 2p^2q^2 + 4pq
x
= 3p^3 - 2p^2q^2 + 4pq - (2p^3 + 5p^2q^2 + 2pq)
= 3p^3 - 2p^2q^2 + 4pq - 2p^3 - 5p^2q^2 - 2pq
= 3p^3 - 2p^3 - 2p^2q^2 - 5p^2q^2 + 4pq - 2pq
= p^3 - 7p^2q^2 + 2pq
Therefore,
p^3 - 7p^2q^2 + 2pq should be added.