Answer:
![\rm \displaystyle (x + y)/(x - y) + (x - y)/(x + y) - \frac{2( {x}^(2) - {y}^(2)) }{ {x}^(2) - {y}^(2) } = \boxed{ \displaystyle (4y ^2)/((x - y)(x + y)) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/krk4gabdclykfpqku69pmqjqsripbhk6xd.png)
Explanation:
we want to simplify the following
![\rm \displaystyle (x + y)/(x - y) + (x - y)/(x + y) - \frac{2( {x}^(2) - {y}^(2)) }{ {x}^(2) - {y}^(2) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/2qmyugm87tg7zfq9labwwkr61g1uoufvyd.png)
notice that we can reduce the fraction thus do so:
![\rm \displaystyle (x + y)/(x - y) + (x - y)/(x + y) - \frac{2 \cancel{( {x}^(2) - {y}^(2)) }}{ \cancel{{x}^(2) - {y}^(2) }}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ti2ael3nzhr5lnj0kjuadb1icxirj4nyjl.png)
![\rm \displaystyle (x + y)/(x - y) + (x - y)/(x + y) - 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/w97noi7oyfaz7jhxi49m22x3sbzzgr5jap.png)
in order to simplify the addition of the algebraic fraction the first step is to figure out the LCM of the denominator and that is (x-y)(x+y) now divide the LCM by the denominator of very fraction and multiply the result by the numerator which yields:
![\rm \displaystyle (x + y)/(x - y) + (x - y)/(x + y) - 2 \\ \\ \displaystyle ((x + y)^2 + (x - y)^2 - 2(x + y)(x - y))/((x - y)(x + y))](https://img.qammunity.org/2022/formulas/mathematics/high-school/4plrl1srvwpd02w8nv03uzoiofvjzksc6k.png)
factor using (a-b)²=a²+b²-2ab
![\rm \displaystyle ((x + y-(x - y) )^2)/((x - y)(x + y))](https://img.qammunity.org/2022/formulas/mathematics/high-school/yk0zs0l5bdxpt4mheikim1pdfbejwwvol5.png)
remove parentheses
![\rm \displaystyle ((x + y-x + y) )^2)/((x - y)(x + y))](https://img.qammunity.org/2022/formulas/mathematics/high-school/ofskybelkgvatcp73wf2frsmn7y9kvqdse.png)
simplify:
![\rm \displaystyle (4y ^2)/((x - y)(x + y))](https://img.qammunity.org/2022/formulas/mathematics/high-school/14k7bg5mkjns3srk7lbkkaxx2e9lbay82u.png)