210k views
5 votes
Please help in the math


(x + y)/(x - y) + (x - y)/(x + y) - \frac{2( {x}^(2) - {y}^(2)) }{ {x}^(2) - {y}^(2) }


User Jamesc
by
4.6k points

2 Answers

4 votes

9514 1404 393

Answer:

4y²/(x² -y²)

Explanation:

The expression simplifies as follows:


(x+y)/(x-y)+(x-y)/(x+y)-(2(x^2-y^2))/(x^2-y^2)\\\\=((x+y)(x+y)+(x-y)(x-y)-2(x^2-y^2))/((x-y)(x+y))\\\\=((x+y)^2+(x-y)^2-2(x^2-y^2))/(x^2-y^2)\\\\=((x^2+2xy+y^2)+(x^2-2xy+y^2)-2(x^2-y^2))/(x^2-y^2)\\\\=(2(x^2+y^2-(x^2-y^2)))/(x^2-y^2)=\boxed{(4y^2)/(x^2-y^2)}

User Keith Elder
by
5.4k points
5 votes

Answer:


\rm \displaystyle (x + y)/(x - y) + (x - y)/(x + y) - \frac{2( {x}^(2) - {y}^(2)) }{ {x}^(2) - {y}^(2) } = \boxed{ \displaystyle (4y ^2)/((x - y)(x + y)) }

Explanation:

we want to simplify the following


\rm \displaystyle (x + y)/(x - y) + (x - y)/(x + y) - \frac{2( {x}^(2) - {y}^(2)) }{ {x}^(2) - {y}^(2) }

notice that we can reduce the fraction thus do so:


\rm \displaystyle (x + y)/(x - y) + (x - y)/(x + y) - \frac{2 \cancel{( {x}^(2) - {y}^(2)) }}{ \cancel{{x}^(2) - {y}^(2) }}


\rm \displaystyle (x + y)/(x - y) + (x - y)/(x + y) - 2

in order to simplify the addition of the algebraic fraction the first step is to figure out the LCM of the denominator and that is (x-y)(x+y) now divide the LCM by the denominator of very fraction and multiply the result by the numerator which yields:


\rm \displaystyle (x + y)/(x - y) + (x - y)/(x + y) - 2 \\ \\ \displaystyle ((x + y)^2 + (x - y)^2 - 2(x + y)(x - y))/((x - y)(x + y))

factor using (a-b)²=a²+b²-2ab


\rm \displaystyle ((x + y-(x - y) )^2)/((x - y)(x + y))

remove parentheses


\rm \displaystyle ((x + y-x + y) )^2)/((x - y)(x + y))

simplify:


\rm \displaystyle (4y ^2)/((x - y)(x + y))

User Cedric Arnould
by
5.3k points