Answer:
The standard error for the new sample size is of 23.4.
Explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Interpretation:
From this, we can gather that the standard error is inversely proportional to the square root of the sample size, that is, for example, if the sample size is multiplied by 4, the standard error is divided by the square root of 4, which is 2.
Standard error of 52.4, sample size multiplied by 5. What is the standard error for the new sample size?
The standard error of 52.4 divided by the square root of 5. So
The standard error for the new sample size is of 23.4.