Answer:
the amount of energy needed is 1.8 x 10¹⁷ J.
Step-by-step explanation:
Given;
mass of the object, m₀ = 1 kg
velocity of the object, v = 0.866 c
By physics convection, c is the speed of light = 3 x 10⁸ m/s
The energy needed is calculated as follows;
E = Mc²
As the object approaches the speed of light, the change in the mass of the object is given by Einstein's relativity formula;

The energy required is calculated as;
E = 2 x (3 x 10⁸)²
E = 1.8 x 10¹⁷ J
Therefore, the amount of energy needed is 1.8 x 10¹⁷ J.