59.0k views
5 votes
Conjugate/Rational Number?

Please include a detailed explanation so I can learn to do it by myself, Thank you!

Conjugate/Rational Number? Please include a detailed explanation so I can learn to-example-1

1 Answer

3 votes

Answer:

1)
(2)/(√(5) ) = (2 \cdot √(5) )/(5)

2)
-(5)/(√(3) ) = -(5 \cdot √(3) )/(3)

3)
(√(2) + √(5) )/(√(10) ) =(√(5) )/(5) + ( √(2) )/(2)

4)
(3 + √(2) )/(√(3) ) * (√(3) )/(√(3) ) = √(3) + (√(6) )/(3)

5)
(√(3) )/(√(5) + √(2) )= (√(15) - √(6) )/(3)

Explanation:

The rationalization of the denominator of the surds are found as follows;

1)
(2)/(√(5) )


(2)/(√(5) ) * (√(5) )/(√(5) ) = (2 \cdot √(5) )/(5)


(2)/(√(5) ) = (2 \cdot √(5) )/(5)

2)
-(5)/(√(3) )


-(5)/(√(3) ) * (√(3) )/(√(3) ) = -(5 \cdot √(3) )/(3)


-(5)/(√(3) ) = -(5 \cdot √(3) )/(3)

3)
(√(2) + √(5) )/(√(10) )


(√(2) + √(5) )/(√(10) ) * ( √(10) )/(√(10) ) = (√(20) + √(50) )/(10 ) = (2\cdot √(5) + 5 \cdot √(2) )/(10) = (√(5) )/(5) + ( √(2) )/(2)


(√(2) + √(5) )/(√(10) ) =(√(5) )/(5) + ( √(2) )/(2)

4)
(3 + √(2) )/(√(3) )


(3 + √(2) )/(√(3) ) * (√(3) )/(√(3) ) = (3 \cdot √(3)+√(6) )/(3 ) = √(3) + (√(6) )/(3)


(3 + √(2) )/(√(3) ) * (√(3) )/(√(3) ) = √(3) + (√(6) )/(3)

5)
(√(3) )/(√(5) + √(2) )


(√(3) )/(√(5) + √(2) ) = (√(5) - √(2) )/(√(5) - √(2) ) = (√(15) -√(6) )/(5 - 2) = (√(15) - √(6) )/(3)


(√(3) )/(√(5) + √(2) )= (√(15) - √(6) )/(3)

6)
(√(7) )/(√(3) - √(5) )


(√(7) )/(√(3) - √(5) ) * (√(3) + √(5))/(√(3) + √(5)) = \frac{√(21) + √(35)}{{3} + {5}} = (√(21) + √(35))/(8)


(√(7) )/(√(3) - √(5) ) * (√(3) + √(5))/(√(3) + √(5)) =(√(21) + √(35))/(8)

User Loghorn
by
6.3k points