59.0k views
5 votes
Conjugate/Rational Number?

Please include a detailed explanation so I can learn to do it by myself, Thank you!

Conjugate/Rational Number? Please include a detailed explanation so I can learn to-example-1

1 Answer

3 votes

Answer:

1)
(2)/(√(5) ) = (2 \cdot √(5) )/(5)

2)
-(5)/(√(3) ) = -(5 \cdot √(3) )/(3)

3)
(√(2) + √(5) )/(√(10) ) =(√(5) )/(5) + ( √(2) )/(2)

4)
(3 + √(2) )/(√(3) ) * (√(3) )/(√(3) ) = √(3) + (√(6) )/(3)

5)
(√(3) )/(√(5) + √(2) )= (√(15) - √(6) )/(3)

Explanation:

The rationalization of the denominator of the surds are found as follows;

1)
(2)/(√(5) )


(2)/(√(5) ) * (√(5) )/(√(5) ) = (2 \cdot √(5) )/(5)


(2)/(√(5) ) = (2 \cdot √(5) )/(5)

2)
-(5)/(√(3) )


-(5)/(√(3) ) * (√(3) )/(√(3) ) = -(5 \cdot √(3) )/(3)


-(5)/(√(3) ) = -(5 \cdot √(3) )/(3)

3)
(√(2) + √(5) )/(√(10) )


(√(2) + √(5) )/(√(10) ) * ( √(10) )/(√(10) ) = (√(20) + √(50) )/(10 ) = (2\cdot √(5) + 5 \cdot √(2) )/(10) = (√(5) )/(5) + ( √(2) )/(2)


(√(2) + √(5) )/(√(10) ) =(√(5) )/(5) + ( √(2) )/(2)

4)
(3 + √(2) )/(√(3) )


(3 + √(2) )/(√(3) ) * (√(3) )/(√(3) ) = (3 \cdot √(3)+√(6) )/(3 ) = √(3) + (√(6) )/(3)


(3 + √(2) )/(√(3) ) * (√(3) )/(√(3) ) = √(3) + (√(6) )/(3)

5)
(√(3) )/(√(5) + √(2) )


(√(3) )/(√(5) + √(2) ) = (√(5) - √(2) )/(√(5) - √(2) ) = (√(15) -√(6) )/(5 - 2) = (√(15) - √(6) )/(3)


(√(3) )/(√(5) + √(2) )= (√(15) - √(6) )/(3)

6)
(√(7) )/(√(3) - √(5) )


(√(7) )/(√(3) - √(5) ) * (√(3) + √(5))/(√(3) + √(5)) = \frac{√(21) + √(35)}{{3} + {5}} = (√(21) + √(35))/(8)


(√(7) )/(√(3) - √(5) ) * (√(3) + √(5))/(√(3) + √(5)) =(√(21) + √(35))/(8)

User Loghorn
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories