62.0k views
4 votes
Factorise x²-5 please

1 Answer

3 votes


\sf \: {x}^(2) - 5


\sf \: Use \: the \: algebraic \: identity \\ \sf \: a {}^(2) - {b}^(2) = (a - b)(a + b)


\sf \: Substitute \: the \: value \: of \: a \: and \: b \: in \: the \: identity.


\sf \: a = \sqrt{x ^(2) } = x \\ \sf \: b = √(5)


\sf \: the \: identity \: becomes \:


\sf {x}^(2) - 5 \\ \sf = (x - √(5) )(x + √(5) ) \\

Answer ⟶
\boxed{\bf{(x - √(5) )(x + √(5) )}}

User Bigblind
by
3.6k points