Answer:
Option (3)
Explanation:
Given function is,
f(x) = 3x² - 2x
=
![3(x^(2) -(2)/(3)x)](https://img.qammunity.org/2022/formulas/mathematics/college/7s0mzuzyhx8tonfah436a757hodlqjdc4x.png)
=
![3(x^(2) -(2)/(3)x+(1)/(9)-(1)/(9))](https://img.qammunity.org/2022/formulas/mathematics/college/8y9aq3cl38o1v499xrosdzb724kzw73rm1.png)
=
![3(x^(2)-(2)/(3)x+(1)/(9))-(1)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/zrpcyj1es6iqfmaqvgijsutvuk3fiknnqi.png)
=
![3(x-(1)/(3))^2-(1)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/2y2qntyvfajodvpi4scn41py4pfj634f74.png)
Vertex of the parabola →
![((1)/(3),-(1)/(3))](https://img.qammunity.org/2022/formulas/mathematics/college/dginu8heitz80xtnkt5ay2z8apao51nxti.png)
Here, leading coefficient is positive (+3),
Therefore, parabola will open upwards.
In a parabola opening upwards function decreases from negative infinity to the x value of the vertex.
Function will decrease in the interval (-∞,
).
Option (3) will be the answer.