130k views
2 votes
I need help with number 5

I need help with number 5-example-1
User Maxheld
by
8.9k points

1 Answer

2 votes

Answer:


\int\limits {{(sin \ x})^(-1) } \, dx = \text{ln}\left |{tan\, \left ((x)/(2) \right)} \right |

Explanation:


\int\limits {(sin \ x)^(-1)} \, dx = \int\limits {(1)/(sin \ x) } \, dx

We have the following relationships;


(1)/(sin \ x ) = csc \, x

We can write;


csc \, x = csc \, x * (csc \, x + cot \, x)/(csc \, x + cot \, x) = (csc^2 \, x + csc \, x \cdot cot \, x)/(csc \, x + cot \, x)

We note that the numerator of
(csc^2 \, x + csc \, x \cdot cot \, x)/(csc \, x + cot \, x) , which is
{csc^2 \, x + csc \, x \cdot cot \, x} is the derivative of the denominator,
{csc \, x + cot \, x}, therefore, we can use integration by substitution method and write;


{csc \, x + cot \, x} = u, from which we get;


({csc^2 \, x + csc \, x \cdot cot \, x}) \cdot dx = (-1)du

Therefore, we can write;


\int\limits {(1)/(sin \ x) } \, dx = \int\limits {\frac{{csc^2 \, x + csc \, x \cdot cot \, x}}{{csc \, x + cot \, x}} } \, dx \Rightarrow -\int\limits {(1)/(u) } \, du = -ln \left |u \right |


\text{-ln} \left |u \right | = \text{-ln}\left |{csc \, x + cot \, x} \right |

Therefore;


\int\limits {(1)/(sin \ x) } \, dx = \text{-ln}\left |{csc \, x + cot \, x} \right |

csc x + cot x = (1/sin x) + ((cos x)/(sin x)) = (1 + cos x)/(sin x)

(1 + cos x)/(sin x) = (cos²(x/2) + sin²(x/2) + cos²(x/2) - sin²(x/2))/(2sin(x/2)·cos(x/2)) = (2·cos²(x/2))/((2sin(x/2)·cos(x/2)) = cos(x/2)/sin(x/2) = cot(x/2)

Therefore;


\text{-ln}\left |{csc \, x + cot \, x} \right | = \text{-ln}\left |{cot \, \left ((x)/(2) \right) } \right | = \text{ln}\left |{cot \, \left ((x)/(2) \right)} \right | ^(-1) = \text{ln}\left |{tan\, \left ((x)/(2) \right)} \right |

Therefore;


\int\limits {{(sin \ x})^(-1) } \, dx = \int\limits {(1)/(sin \ x) } \, dx = \text{ln}\left |{tan\, \left ((x)/(2) \right)} \right |

User MonkeyBonkey
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories