129k views
21 votes
Two containers designed to hold water are side by side, both in the shape of a cylinder. Container A has a radius of 16 feet and a height of 19 feet. Container B has a radius of 18 feet and a height of 18 feet. Container A is full of water and the water is pumped into Container B until Container A is empty.

To the nearest tenth, what is the percent of Container B that is empty after the pumping is complete?

1 Answer

0 votes

Answer:

16.6%

Explanation:

You want the fraction of container B, a cylinder with radius and height of 18 ft, that remains empty after the contents of container A are pumped into it. Container A is a cylinder with radius 16 ft and height 19 ft.

Volume

The volume of a cylinder is given by the formula ...

V = πr²h

Fraction

The fraction of container B that is full after container A is emptied into it is ...

Va/Vb = (π(16 ft)²(19 ft))/(π(18 ft²)(18 ft)) = (16²·19)/18³

The fraction of container B that is empty, is the difference between 1 and this amount:

V'b = 1 -(16²·19)/18³ ≈ 0.166 = 16.6%

About 16.6% of container B remains empty.

<95141404393>

Two containers designed to hold water are side by side, both in the shape of a cylinder-example-1
User Mark Otaris
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories