Answer:
See Below.
Explanation:
We are given that:
![\displaystyle (dT)/(dt) = -k(T - T_0)](https://img.qammunity.org/2022/formulas/mathematics/college/cmqzmvd4viyh69ilh8brs54xdbls9nyw48.png)
And we want to show that:
![\displaystyle T = T_0+Ae^(-kt)](https://img.qammunity.org/2022/formulas/mathematics/college/4qd12d84q0z31rjkq2ofuwkni8c46m4p4t.png)
From the original equation, divide both sides by (T - T₀) and multiply both sides by dt. Hence:
![\displaystyle (dT)/(T-T_0)= -k\, dt](https://img.qammunity.org/2022/formulas/mathematics/college/oqdmefihahqdkxs1r9214z17hl9d3z2fcg.png)
Take the integral of both sides:
![\displaystyle \int (dT)/(T- T_0) = \int -k \, dt](https://img.qammunity.org/2022/formulas/mathematics/college/w27h5r2uefmb7mlsx1w42u78fl1mis7t6k.png)
Integrate. For the left integral, we can use u-substitution. Note that T₀ is simply a constant. Hence:
![\displaystyle \ln\left|T - T_0\right| = -kt+C](https://img.qammunity.org/2022/formulas/mathematics/college/3f60ug809attvssioy0vjuezbra481kvii.png)
Raise both sides to e:
![\displaystyle e^(\ln\left|T-T_0\right|) = e^(-kt+C)](https://img.qammunity.org/2022/formulas/mathematics/college/tmufrg44uk0astyn2e0f9ho0bkdhlgn751.png)
Simplify:
![\displaystyle \begin{aligned} \left| T- T_0\right| &= e^(-kt) \cdot e^C \\ \\ &= e^C\left(e^(-kt)\right) \\ \\ &=Ae^(-kt) & \text{Let $e^C = A$}\end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/college/st8vcnlvnr415ff5nnkc4jshu7kjjxp6zk.png)
Since the temperature T will always be greater than or equal to the surrounding medium T₀, we can remove the absolute value. Hence:
![\left(T - T_0\right) = Ae^(-kt)](https://img.qammunity.org/2022/formulas/mathematics/college/1lfhjqw2r1dn89i6c3xq33sdv53jx8aha1.png)
Therefore:
![\displaystyle T = T_0+Ae^(-kt)](https://img.qammunity.org/2022/formulas/mathematics/college/4qd12d84q0z31rjkq2ofuwkni8c46m4p4t.png)