Given:
The data set is:
9, 6, 8, 9, 7, 4, 3, 5, 2, 4
To find:
The mean absolute deviation (MAD) of the given data.
Solution:
We have,
9, 6, 8, 9, 7, 4, 3, 5, 2, 4
The mean of the given data set is:
![\overline{x}=(1)/(n)\sum x_i](https://img.qammunity.org/2022/formulas/mathematics/college/zzy0qsw515oarsp28zub2wv2bcscgbtqk8.png)
![\overline{x}=(1)/(10)(9+6+8+9+7+4+3+5+2+4)](https://img.qammunity.org/2022/formulas/mathematics/college/819tdnatkl66ft50cc6jnam3w5krddndsc.png)
![\overline{x}=(1)/(10)(57)](https://img.qammunity.org/2022/formulas/mathematics/college/w3fu18lc042s2cis7dvge49q6s5mqvqsos.png)
![\overline{x}=5.7](https://img.qammunity.org/2022/formulas/mathematics/college/k0mj7kvesa0oxnn3f2piijdghliqpd0onv.png)
So, the mean of the given data set is 5.7.
The mean absolute deviation (MAD) is:
![MAD=(1)/(n)\sum |x-\overline{x}|](https://img.qammunity.org/2022/formulas/mathematics/college/a9th6stlafsj2tjw7je1von6qqvsbupyow.png)
The mean absolute deviation (MAD) of the given data is:
![MAD=(1)/(10)(3.3+0.3+2.3+3.3+1.3+1.7+2.7+0.7+3.7+1.7)](https://img.qammunity.org/2022/formulas/mathematics/college/yaozwppfpoo9o06opnoekybaw0ex440c5b.png)
![MAD=(1)/(10)(21)](https://img.qammunity.org/2022/formulas/mathematics/college/emni90wuuejlll537i2lalzlyyg01lsymb.png)
![MAD=2.1](https://img.qammunity.org/2022/formulas/mathematics/college/gqr73dnt6s46fy5thfwis8aenomwgo6lfv.png)
Therefore, the mean absolute deviation (MAD) of the given data set is 2.1.