96.1k views
0 votes
Prove that: cos^2 (45+A)+cos^2 (45-A)=1​

User Ivelisse
by
8.2k points

2 Answers

5 votes

Answer:

Explanation:

cos 2x=cos²x-sin²x=cos²x-(1-cos²x)=cos²x-1+cos²x=2cos²x-1

2cos²x=1+cos2x


cos^2x=(1)/(2)(1+cos2x)

cos²(45+A)+cos²(45-A)


=(1)/(2)(1+cos(90+2A))+(1)/(2)(1+cos(90-2A))\\=(1)/(2) (1-sin2A)+(1)/(2) (1+sin 2A)\\=(1)/(2) (1-sin2A+1+sin 2A)\\=(1)/(2) *2\\=1

cos (90-x)=sin x

cos (90+x)=-sin x

User Stephen Taylor
by
7.9k points
5 votes

Answer:

see explanation

Explanation:

Using the cosine addition formula

cos(A ± B ) = cosAcosB ∓ sinAsinB

Then considering the left side

cos²(45 + A) + cos²(45 - A)

= [ cos45cosA - sin45sinA ]² + [cos45cosA + sin45sinA]]²

= [
(1)/(√(2) ) cosA -
(1)/(√(2) ) sinA ]² + [
(1)/(√(2) ) cosA +
(1)/(√(2) ) sinA ]²

=
(1)/(2)cos²A - sinAcosA +
(1)/(2) sin²A +
(1)/(2) cos²A + sinAcosA +
(1)/(2) sin²A

= cos²A + sin²A

= 1

= right side , then proven

User Tsvedas
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories