96.1k views
0 votes
Prove that: cos^2 (45+A)+cos^2 (45-A)=1​

User Ivelisse
by
4.1k points

2 Answers

5 votes

Answer:

Explanation:

cos 2x=cos²x-sin²x=cos²x-(1-cos²x)=cos²x-1+cos²x=2cos²x-1

2cos²x=1+cos2x


cos^2x=(1)/(2)(1+cos2x)

cos²(45+A)+cos²(45-A)


=(1)/(2)(1+cos(90+2A))+(1)/(2)(1+cos(90-2A))\\=(1)/(2) (1-sin2A)+(1)/(2) (1+sin 2A)\\=(1)/(2) (1-sin2A+1+sin 2A)\\=(1)/(2) *2\\=1

cos (90-x)=sin x

cos (90+x)=-sin x

User Stephen Taylor
by
4.0k points
5 votes

Answer:

see explanation

Explanation:

Using the cosine addition formula

cos(A ± B ) = cosAcosB ∓ sinAsinB

Then considering the left side

cos²(45 + A) + cos²(45 - A)

= [ cos45cosA - sin45sinA ]² + [cos45cosA + sin45sinA]]²

= [
(1)/(√(2) ) cosA -
(1)/(√(2) ) sinA ]² + [
(1)/(√(2) ) cosA +
(1)/(√(2) ) sinA ]²

=
(1)/(2)cos²A - sinAcosA +
(1)/(2) sin²A +
(1)/(2) cos²A + sinAcosA +
(1)/(2) sin²A

= cos²A + sin²A

= 1

= right side , then proven

User Tsvedas
by
4.1k points