96.8k views
3 votes
Hi, how do we do this question?​

Hi, how do we do this question?​-example-1
User Morphasis
by
8.2k points

1 Answer

3 votes

Answer:


\displaystyle \int {(2x)/(3x + 1)} \, dx = (-2(ln|3x + 1| - 3x))/(9) + C

General Formulas and Concepts:

Algebra I

  • Terms/Coefficients
  • Factoring

Algebra II

  • Polynomial Long Division

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

Step 1: Define

Identify


\displaystyle \int {(2x)/(3x + 1)} \, dx

Step 2: Integrate Pt. 1

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:
    \displaystyle \int {(2x)/(3x + 1)} \, dx = \int {\bigg( (2)/(3) - (2)/(3(3x + 1)) \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle \int {(2x)/(3x + 1)} \, dx = \int {(2)/(3)} \, dx - \int {(2)/(3(3x + 1))} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(2x)/(3x + 1)} \, dx = (2)/(3)\int {} \, dx - (2)/(3)\int {(1)/(3x + 1)} \, dx
  4. [1st Integral] Reverse Power Rule:
    \displaystyle \int {(2x)/(3x + 1)} \, dx = (2)/(3)x - (2)/(3)\int {(1)/(3x + 1)} \, dx

Step 3: Integrate Pt. 2

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = 3x + 1
  2. [u] Differentiate [Basic Power Rule]:
    \displaystyle du = 3 \ dx

Step 4: Integrate Pt. 3

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(2x)/(3x + 1)} \, dx = (2)/(3)x - (2)/(9)\int {(3)/(3x + 1)} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int {(2x)/(3x + 1)} \, dx = (2)/(3)x - (2)/(9)\int {(1)/(u)} \, du
  3. [Integral] Logarithmic Integration:
    \displaystyle \int {(2x)/(3x + 1)} \, dx = (2)/(3)x - (2)/(9)ln|u| + C
  4. Back-Substitute:
    \displaystyle \int {(2x)/(3x + 1)} \, dx = (2)/(3)x - (2)/(9)ln|3x + 1| + C
  5. Factor:
    \displaystyle \int {(2x)/(3x + 1)} \, dx = -2 \bigg( (1)/(9)ln|3x + 1| - (x)/(3) \bigg) + C
  6. Rewrite:
    \displaystyle \int {(2x)/(3x + 1)} \, dx = (-2(ln|3x + 1| - 3x))/(9) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

Hi, how do we do this question?​-example-1
User Jayant Agrawal
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories