Answer:
![Ratio = 8.8](https://img.qammunity.org/2022/formulas/medicine/college/w9fuby5thnuj4ubds47mehzvsrz21ei8e5.png)
The exposure may be risk factor.
Step-by-step explanation:
Given
![\begin{array}{ccc}{Exposure\ Status} & {Cases} & {Control} & {Yes} & {11} & {108} & {No} & {5} & {436} & {Total} & {16} & {544} \ \end{array}](https://img.qammunity.org/2022/formulas/medicine/college/h4to1rak81fbkavm5j4y3rpxxm1a5a9gw5.png)
Required
The odd ratio
First, we calculate the odds of exposure using:
![Odds = (With\ Exposure(Yes))/(Without\ Exposure (No))](https://img.qammunity.org/2022/formulas/medicine/college/xwk6mmrh1uzt6m3r1mr3xosdvtc0mle5j0.png)
For cases, we have:
![Odds_(Cases) = (11)/(5)](https://img.qammunity.org/2022/formulas/medicine/college/thtwt92qxwjsdh2b5679d0j98ql2gt19ai.png)
![Odds_(Cases) = 2.20](https://img.qammunity.org/2022/formulas/medicine/college/j71krmndpy5hmqjoldic26r4zg9edauaut.png)
For controls, we have:
![Odds_(Controls) = (108)/(436)](https://img.qammunity.org/2022/formulas/medicine/college/3qilep843xuizjijfpklwijmmo9ov32v33.png)
![Odds_(Controls) = 0.25](https://img.qammunity.org/2022/formulas/medicine/college/p6c9bcpla5rwrvfd0zlxpj7vqm0eqy4vv4.png)
So, the odds' ratio is:
![Ratio = (Odds_(Cases))/(Odds_(Controls))](https://img.qammunity.org/2022/formulas/medicine/college/mzay7r7yp8c32gf4o1u98qm896zdmijpds.png)
![Ratio = (2.20)/(0.25)](https://img.qammunity.org/2022/formulas/medicine/college/3ce8aa37pi12f5y96yol9dld358cekk0j2.png)
![Ratio = 8.8](https://img.qammunity.org/2022/formulas/medicine/college/w9fuby5thnuj4ubds47mehzvsrz21ei8e5.png)
Conclusion about the odds' ratio
The calculated ratio is greater than (and also far from) 1.
This implies that there is a greater exposure than the controls.
So, we can conclude that the exposure may be risk factor.