Explanation:
We are here given that a point B is between A and C . Also ,
- Value of AB = 2x
- Value of BC = 3x + 1
- Value of AC = 21 .
And we would like to calculate the length of BC . For figure refer to the attachment. From figure we can see that ,
![\rm:\implies AC = AB + BC](https://img.qammunity.org/2023/formulas/mathematics/college/lh6x6ug1hc6zvkt5kxcgvlawxy4pzftt5c.png)
Substitute the respective values,
![\rm:\implies 21 = 2x + 3x + 1](https://img.qammunity.org/2023/formulas/mathematics/college/6gxm2y672569rribh0n2ojlll1k5offfzo.png)
Add like terms ,
![\rm:\implies 21 = 5x +1](https://img.qammunity.org/2023/formulas/mathematics/college/k2z2u4b82t5donex65psi720ja51quuhbo.png)
Subtract 1 on both sides,
![\rm:\implies 21-1 = 5x](https://img.qammunity.org/2023/formulas/mathematics/college/s4qctl1wkpm4r5cbl51pcax7amga0sfeyr.png)
Simplify,
![\rm:\implies 20=5x](https://img.qammunity.org/2023/formulas/mathematics/college/t9z43x9q9gdidghrab4e9xrof7zgbjsfw8.png)
Divide both sides by 5,
![\rm:\implies \blue{ x = 4}](https://img.qammunity.org/2023/formulas/mathematics/college/23t9prq5bpesjr0bkgllmtrhwefsq0mvvc.png)
Now consider ,
![\rm:\implies BC = 3x+1](https://img.qammunity.org/2023/formulas/mathematics/college/e21an9ufozuwr5sur5eywu4kc826hz3blh.png)
Plug in the value of x found above ,
![\rm:\implies BC= 3(4)+1](https://img.qammunity.org/2023/formulas/mathematics/college/l5vhgci3erfagey0zankwxnb1sreyvpkhc.png)
Simplify,
![\rm:\implies BC = 12+1](https://img.qammunity.org/2023/formulas/mathematics/college/k8r6df8lqjyl5sv04lue3ytnk8ifn8z0af.png)
Add,
![\rm:\implies \underline{\boxed{\blue{\rm{ \quad BC \quad =\quad 13\quad }}}}](https://img.qammunity.org/2023/formulas/mathematics/college/nlpx9jzpeanavkpgn1cdoxwigwx7yhvs9e.png)
And we are done !