192k views
0 votes
Find from first principle the derivative of 3x+5/√x​

1 Answer

5 votes

Answer:


\displaystyle (d)/(dx) = \frac{3x - 5}{2x^\bigg{(3)/(2)}}

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Powering]:
    \displaystyle (b^m)^n = b^(m \cdot n)
  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Calculus

Derivatives

Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Explanation:

Step 1: Define

Identify


\displaystyle (3x + 5)/(√(x))

Step 2: Differentiate

  1. Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle \frac{3x + 5}{x^\bigg{(1)/(2)}}
  2. Quotient Rule:
    \displaystyle (d)/(dx) = \frac{(x^\bigg{(1)/(2)})(d)/(dx)[3x + 5] - (d)/(dx)[x^\bigg{(1)/(2)}](3x + 5)}{(x^\bigg{(1)/(2)})^2}
  3. Simplify [Exponential Rule - Powering]:
    \displaystyle (d)/(dx) = \frac{(x^\bigg{(1)/(2)})(d)/(dx)[3x + 5] - (d)/(dx)[x^\bigg{(1)/(2)}](3x + 5)}{x}
  4. Basic Power Rule [Derivative Property - Addition/Subtraction]:
    \displaystyle (d)/(dx) = \frac{(x^\bigg{(1)/(2)})(3x^(1 - 1) + 0) - ((1)/(2)x^\bigg{(1)/(2) - 1})(3x + 5)}{x}
  5. Simplify:
    \displaystyle (d)/(dx) = \frac{3x^\bigg{(1)/(2)} - ((1)/(2)x^\bigg{(-1)/(2)})(3x + 5)}{x}
  6. Rewrite [Exponential Rule - Rewrite]:
    \displaystyle (d)/(dx) = \frac{3x^\bigg{(1)/(2)} - (\frac{1}{2x^{(1)/(2)}})(3x + 5)}{x}
  7. Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle (d)/(dx) = (3√(x) - ((1)/(2√(x)))(3x + 5))/(x)
  8. Simplify [Rationalize]:
    \displaystyle (d)/(dx) = \frac{3x - 5}{2x^\bigg{(3)/(2)}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

User Amirouche Douda
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories