192k views
0 votes
Find from first principle the derivative of 3x+5/√x​

1 Answer

5 votes

Answer:


\displaystyle (d)/(dx) = \frac{3x - 5}{2x^\bigg{(3)/(2)}}

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Powering]:
    \displaystyle (b^m)^n = b^(m \cdot n)
  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Calculus

Derivatives

Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Explanation:

Step 1: Define

Identify


\displaystyle (3x + 5)/(√(x))

Step 2: Differentiate

  1. Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle \frac{3x + 5}{x^\bigg{(1)/(2)}}
  2. Quotient Rule:
    \displaystyle (d)/(dx) = \frac{(x^\bigg{(1)/(2)})(d)/(dx)[3x + 5] - (d)/(dx)[x^\bigg{(1)/(2)}](3x + 5)}{(x^\bigg{(1)/(2)})^2}
  3. Simplify [Exponential Rule - Powering]:
    \displaystyle (d)/(dx) = \frac{(x^\bigg{(1)/(2)})(d)/(dx)[3x + 5] - (d)/(dx)[x^\bigg{(1)/(2)}](3x + 5)}{x}
  4. Basic Power Rule [Derivative Property - Addition/Subtraction]:
    \displaystyle (d)/(dx) = \frac{(x^\bigg{(1)/(2)})(3x^(1 - 1) + 0) - ((1)/(2)x^\bigg{(1)/(2) - 1})(3x + 5)}{x}
  5. Simplify:
    \displaystyle (d)/(dx) = \frac{3x^\bigg{(1)/(2)} - ((1)/(2)x^\bigg{(-1)/(2)})(3x + 5)}{x}
  6. Rewrite [Exponential Rule - Rewrite]:
    \displaystyle (d)/(dx) = \frac{3x^\bigg{(1)/(2)} - (\frac{1}{2x^{(1)/(2)}})(3x + 5)}{x}
  7. Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle (d)/(dx) = (3√(x) - ((1)/(2√(x)))(3x + 5))/(x)
  8. Simplify [Rationalize]:
    \displaystyle (d)/(dx) = \frac{3x - 5}{2x^\bigg{(3)/(2)}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

User Amirouche Douda
by
4.4k points