28.5k views
4 votes
Given Q(x) = 7x − 3 and P(x) = 7x3 − 3x2 + 42x − 27, find P(x) Q(x) . (Divide using long division.)

User Comanitza
by
3.6k points

1 Answer

7 votes

Complete question:

Given Q(x) = 7x − 3 and P(x) = 7x3 − 3x2 + 42x − 27, find P(x) ÷ Q(x) . (Divide using long division.)

Answer:


(7x^3 \ - \ 3x^2 \ + \ 42x \ - \ 27)/(7x \ - \ 3) = \ \ x^2 + 6 \ \ (-9)/(7x \ - \ 3)

The quotient = x² + 6 and the remainder = - 9

Explanation:

Given;

Q(x) = 7x − 3

P(x) = 7x³ − 3x² + 42x − 27

To divide P(x) by Q(x) using long division, we apply the following method;

x² + 6

---------------------------------

7x − 3 √ 7x³ − 3x² + 42x − 27

− (7x³ - 3x²)

-------------------------------------

42x − 27

− (42x − 18)

----------------------------------------

− 9


Therefore, \ (7x^3 \ - \ 3x^2 \ + \ 42x \ - \ 27)/(7x \ - \ 3) = \ \ x^2 + 6 \ \ (-9)/(7x \ - \ 3)

The quotient = x² + 6 and the remainder = - 9

User RaidenF
by
3.3k points