Answer:
![P(x < 3) = 25\%](https://img.qammunity.org/2022/formulas/mathematics/college/cnzv43ioxrgfws7wihgzh5avn9mm4solig.png)
![E(x) = 3](https://img.qammunity.org/2022/formulas/mathematics/college/w2hcmkrb5dqnoeklqzzz8cp7k592fbofn8.png)
Explanation:
The given parameters can be represented as:
![\begin{array}{ccccccc}x & {5} & {4} & {3} & {2} & {1}& {0} & P(x) & {25\%} & {30\%} & {20\%} & {15\%} & {5\%} & {5\%} \ \end{array}](https://img.qammunity.org/2022/formulas/mathematics/college/8k16ub4zl790rk4pmipic9tqjoregincny.png)
Solving (a): P(x < 3)
This is calculated as:
----- i.e. all probabilities less than 3
So, we have:
![P(x < 3) = 5\% + 5\% + 15\%](https://img.qammunity.org/2022/formulas/mathematics/college/3n0xpggdu2nresk20ar85nv3ms0fjkjpa1.png)
![P(x < 3) = 25\%](https://img.qammunity.org/2022/formulas/mathematics/college/cnzv43ioxrgfws7wihgzh5avn9mm4solig.png)
Solving (b): Expected number of events
This is calculated as:
![E(x) = \sum x * P(x)](https://img.qammunity.org/2022/formulas/mathematics/college/dqiedz2fic6quar4dmmrm5e8kh0rrzfcna.png)
So, we have:
![E(x) = 5 * 25\% + 4 * 30\% + 3 * 20\% + 2 * 15\% + 1 * 5\% + 0 * 5\%](https://img.qammunity.org/2022/formulas/mathematics/college/uzds61p58vs0syugycvct1twdgmkmwxe3z.png)
![E(x) = 125\% + 120\% + 60\% + 30\% + 5\% + 0\%](https://img.qammunity.org/2022/formulas/mathematics/college/uo8iq9er4tofow7hbuzwle2m1y9wnuey6r.png)
![E(x) = 340\%](https://img.qammunity.org/2022/formulas/mathematics/college/psw0w36hh10xff7q0adutj6991jjws3074.png)
Express as decimal
![E(x) = 3.40](https://img.qammunity.org/2022/formulas/mathematics/college/u9d1d19w9ax49m9sh3a71aklntgsrppw0b.png)
Approximate to the nearest integer
![E(x) = 3](https://img.qammunity.org/2022/formulas/mathematics/college/w2hcmkrb5dqnoeklqzzz8cp7k592fbofn8.png)