Answer:
B(x=4,x=5)
Explanation:
Here,
![x^(2) -9x+20=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/nrgezdj2fbr8ee497v2hstazqpjgmcg1rx.png)
We can find the value of x by various methods.
Method 1
By using formula
x=-b±√b²-4ac/2a
For ax²+bx+c=0
Here,
a=1, b=9, c=20
Putting the values.
x=-b±√b²-4ac/2a
x=-(-9)±√9²-4×1×20/2×1
Taking positive one.
![x=(-(-9)+ √(81-80) )/(2) \\\\x=(9+1)/(2) \\\\x=5](https://img.qammunity.org/2023/formulas/mathematics/high-school/9qe50t8gmq342206zhy22bxd7qhfx52i0i.png)
Taking negative one.
![x=(-(-9)- √(81-80) )/(2) \\\\x=(9-1)/(2) \\\\x=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/86675fbmmyl7en6wax2mr59jpfx53aoos5.png)
x=5,x=4
Method 2
![\hookrightarrow x^(2) -9x+20=0\\\\\hookrightarrow x^(2)-4x-5x+20=0\\\\\hookrightarrow x(x-4)-5(x-4)=0\\\\\hookrightarrow (x-5)(x-4)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/z3yf5ips6dkavghr5uc7zwzgmlsyi5lg6x.png)
x-5=0....I
x-4=0.....II
Solving equation I
x-5=0
x=5
Solving equation II
x-4=0
x=4