Answer:
a) The probability that none of the lines experiences a surface finish problem in 41 hours of operation is 0.0498.
b)The probability that all three lines experience a surface finish problem between 24 and 41 hours of operation is 0.0346.
Explanation:
![Mean = (1)/(\lambda) = 41\\P(X\leq x)= 1-e^(-\lambda x)](https://img.qammunity.org/2022/formulas/mathematics/college/ofkc71mcl7v6bsjmzw7bzod91ponkzkauc.png)
![P(X>x)= e^(-\lambda x)](https://img.qammunity.org/2022/formulas/mathematics/college/wv156ebd1qbwhg1yy9wehr6ht3bvkjn60l.png)
a)
![P(x> 41, y>41, Z>41) = (P(X>41))^(3)\\\\P(X>41)=e^{^{-(41)/(41)}}=e^(-1)](https://img.qammunity.org/2022/formulas/mathematics/college/hcxqa3uxq3pzsmkk6t7644g1lvavqn71cy.png)
![P(x> 41, y>41, Z>41) = \left (e^(-1) \right )^(3)\\\\P(x> 41, y>41, Z>41) = e^(-3) = 0.0498.](https://img.qammunity.org/2022/formulas/mathematics/college/vrznnz5v0mk7yoy6n4u5zba7vpk5dwugy1.png)
b)
![\lambda =(24)/(41)\\P(X=1)=e^(-\lambda )\cdot \lambda =\left ( e^(-0.585) \right )\left ( 0.585 \right )\\P(X=1)=0.326](https://img.qammunity.org/2022/formulas/mathematics/college/cfhw6jsakfaa9p3fo6lqclx1hczd2l22np.png)
For 3 where, P(X=1, Y==1, Z=1)
![= (0.326)^(3) \\\\= 0.0346](https://img.qammunity.org/2022/formulas/mathematics/college/4ml1fksk1eh3lzcn8uyplfth0wga5ijq6u.png)