177k views
4 votes
Use the quadratic formula to find the solution to the quadratic equation given

below.
X^2-x+1/4=0

1 Answer

1 vote

Answer:


\displaystyle x=(-1)/(2)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula:
    \displaystyle x=(-b \pm √(b^2 - 4ac))/(2a)

Explanation:

Step 1: Define

Identify

x² + x + 1/4 = 0

↓ Compare to Standard Form

a = 1, b = 1, c = 1/4

Step 2: Solve for x

  1. Substitute in variables [Quadratic Formula]:
    \displaystyle x=\frac{-1 \pm \sqrt{1^2 - 4(1)((1)/(4))}}{2(1)}
  2. [√Radical] Evaluate exponents:
    \displaystyle x=\frac{-1 \pm \sqrt{1 - 4(1)((1)/(4))}}{2(1)}
  3. [√Radical] Multiply:
    \displaystyle x=(-1 \pm √(1 - 1))/(2(1))
  4. [√Radical] Subtract:
    \displaystyle x=(-1 \pm √(0))/(2(1))
  5. [√Radical] Evaluate:
    \displaystyle x=(-1 \pm 0)/(2(1))
  6. Simplify:
    \displaystyle x=(-1)/(2(1))
  7. Multiply:
    \displaystyle x=(-1)/(2)
User RTA
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories