177k views
4 votes
Use the quadratic formula to find the solution to the quadratic equation given

below.
X^2-x+1/4=0

1 Answer

1 vote

Answer:


\displaystyle x=(-1)/(2)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula:
    \displaystyle x=(-b \pm √(b^2 - 4ac))/(2a)

Explanation:

Step 1: Define

Identify

x² + x + 1/4 = 0

↓ Compare to Standard Form

a = 1, b = 1, c = 1/4

Step 2: Solve for x

  1. Substitute in variables [Quadratic Formula]:
    \displaystyle x=\frac{-1 \pm \sqrt{1^2 - 4(1)((1)/(4))}}{2(1)}
  2. [√Radical] Evaluate exponents:
    \displaystyle x=\frac{-1 \pm \sqrt{1 - 4(1)((1)/(4))}}{2(1)}
  3. [√Radical] Multiply:
    \displaystyle x=(-1 \pm √(1 - 1))/(2(1))
  4. [√Radical] Subtract:
    \displaystyle x=(-1 \pm √(0))/(2(1))
  5. [√Radical] Evaluate:
    \displaystyle x=(-1 \pm 0)/(2(1))
  6. Simplify:
    \displaystyle x=(-1)/(2(1))
  7. Multiply:
    \displaystyle x=(-1)/(2)
User RTA
by
4.4k points