176k views
3 votes
Help differentiate this

Help differentiate this-example-1

1 Answer

5 votes

Answer:


\displaystyle y' = 20x^3 + 6x^2 + 70x + 9

General Formulas and Concepts:

Pre-Algebra

  • Distributive Property

Algebra I

  • Terms/Coefficients
  • Expand by FOIL
  • Functions
  • Function Notation

Calculus

Derivatives

Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Explanation:

Step 1: Define

Identify


\displaystyle y = (x^3 + 7x - 1)(5x + 2)

Step 2: Differentiate

  1. Product Rule:
    \displaystyle y' = (d)/(dx)[(x^3 + 7x - 1)](5x + 2) + (x^3 + 7x - 1)(d)/(dx)[(5x + 2)]
  2. Basic Power Rule [Derivative Property - Addition/Subtraction]:
    \displaystyle y' = (3x^(3 - 1)+ 7x^(1 - 1) - 0)(5x + 2) + (x^3 + 7x - 1)(5x^(1 - 1) + 0)
  3. Simplify:
    \displaystyle y' = (3x^2+ 7)(5x + 2) + 5(x^3 + 7x - 1)
  4. Expand:
    \displaystyle y' = 15x^3 + 6x^2 + 35x + 14 + 5(x^3 + 7x - 1)
  5. [Distributive Property] Distribute 5:
    \displaystyle y' = 15x^3 + 6x^2 + 35x + 14 + 5x^3 + 35x - 5
  6. Combine like terms:
    \displaystyle y' = 20x^3 + 6x^2 + 70x + 9

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

User CnrL
by
6.2k points