Answer:
![x = 36^o](https://img.qammunity.org/2022/formulas/mathematics/high-school/dwkl4f7zrna8wc8who4thm2z5tm9e3fs1w.png)
Explanation:
Given
See attachment
Required
Find x
First, calculate
![\angle BAH](https://img.qammunity.org/2022/formulas/mathematics/high-school/ql6ekm0fggwu05puc0gqo4mbevoharjqcc.png)
--- angle on a straight line
Collect like terms
![\angle BAH = 180 -90-x](https://img.qammunity.org/2022/formulas/mathematics/high-school/muenzhkro9ratnecaaffdm5ms2izofburr.png)
![\angle BAH = 90-x](https://img.qammunity.org/2022/formulas/mathematics/high-school/tm9e45nb7fyngokm9p3a6bxn388me8fk9g.png)
Next, calculate
![\angle HBA](https://img.qammunity.org/2022/formulas/mathematics/high-school/nrp7xc0rclrwbgy38xfwq72ni8meexgg68.png)
--- angle on a straight line
![\angle HBA + 4x = 180](https://img.qammunity.org/2022/formulas/mathematics/high-school/kfzddimvy0brgeglriglfdahx3emi6er8a.png)
Rewrite as:
![\angle HBA = 180-4x](https://img.qammunity.org/2022/formulas/mathematics/high-school/e9qoq0wftzy7r4qnl5zgy9l5cmkfzyio1g.png)
is right-angled;
So:
![\angle HBA + \angle BAH + 90 = 180](https://img.qammunity.org/2022/formulas/mathematics/high-school/fd67n1f8jxyf0kgljnvbh6g3g3slnl00ey.png)
This gives:
![180 - 4x + 90 - x+ 90 = 180](https://img.qammunity.org/2022/formulas/mathematics/high-school/nf8gecfv2xt8v4keo88a36vc4jlrorooe2.png)
Collect like terms
![- 4x - x = 180 - 180 - 90 - 90](https://img.qammunity.org/2022/formulas/mathematics/high-school/g2orl92j6afxzelrxhsh6arvhob5s89a8r.png)
![- 5x = -180](https://img.qammunity.org/2022/formulas/mathematics/high-school/e9cduvrzrdqyibnoo0mmh1teiufyl26z3u.png)
Divide both sides by -5
![x = 36^o](https://img.qammunity.org/2022/formulas/mathematics/high-school/dwkl4f7zrna8wc8who4thm2z5tm9e3fs1w.png)