18.5k views
1 vote
(A) Given that the expression​​ x^3-ax^2+bx+c leaves the same ​remainder when divided by x+1 or x-2, find a in term of b.

(B) (2x-1)^3+6(3+4x^2) is divided by 2x+​​​​​​​​​​​​​​​1.

Answer those two question please. I need it quickly. No silly answers would not be allowded. ​​​​​

User LaneL
by
7.2k points

1 Answer

6 votes

Hello,

A:


\begin{array}c&x^3&x^2&x&1\\&1&-a&b&c\\x=-1&&-1&a+1&-a-b-1\\---&---&---&---&---\\&1&-a-1&a+b+1&-a-b+c-1\\\end{array}\\\\\\\begin{array}ccc&x^3&x^2&x&1\\&1&-a&b&c\\x=2&&2&-2a+4&-4a+2b+8\\---&---&---&---&---\\&1&-a+2&-2a+b+4&-4a+2b+c+8\\\end{array}\\\\\\\\-a-b+c-1=-4a+2b+c+8\\\\\boxed{b=a-3}\\

B:


(2x-1)^3+6(3+4x^2)\\\\=8x^3-12x^2+6x-1+18+24x^2\\\\=8x^3+12x^2+6x+17\\\\\\\begin{array}c&x^3&x^2&x&1\\&8&12&6&17\\x=-(1)/(2) &&-4&-4&-1\\---&---&---&---&---\\&8&8&2&16\\\end{array}\\\\\\(2x-1)^3+6(3+4x^2)=(2x+1)(4x^2+4x+1)+16

User PhD AP EcE
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories