Answer:
![-(77)/(24)](https://img.qammunity.org/2022/formulas/mathematics/college/wb0zqugfq2qi4y5pob6nnvz4ld6kai2iyn.png)
Explanation:
1. rewrite the equation in standard form:
![4\cdot (3)/(2)\left(y-\left(-(41)/(24)\right)\right)=\left(x-\left(-(3)/(2)\right)\right)^2](https://img.qammunity.org/2022/formulas/mathematics/college/9pnkb5uy4ditbqcn49oau4c1exyp49gk0v.png)
2. find (h,k), the vertex. the vertex is
![\left(h,\:k\right)=\left(-(3)/(2),\:-(41)/(24)\right)](https://img.qammunity.org/2022/formulas/mathematics/college/pp82cjisljuqi8oti8hf3nw23imv67sq89.png)
3. find the 'focal length' of the parabola - the focal length is the distance between the vertex and the focus. from the vertex we can see that the focal length, p, = 3/2
4. Parabola is symmetric around the y-axis and so the asymptote is a line parallel to the x-axis, a distance p from the
y coordinate which is at
. Set up the equation:
![y=-(41)/(24)-p](https://img.qammunity.org/2022/formulas/mathematics/college/ktueepiz6gq3lt097zhso6clu3w931e6w9.png)
5. substitute and solve:
![y=-(41)/(24)-(3)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/bdbxp7wsttef3z6leirg2ah1t8fcp7vxic.png)
![y = -(77)/(24)](https://img.qammunity.org/2022/formulas/mathematics/college/nfdfwwvphwtru4wc6rxavl70budrsnzo2o.png)
hope this helps, ask me questions if you still don't understand.