Answer:
The average value of the cost function over the interval is of $23,500.
Explanation:
Average value of a function:
The average value of a function, over an inteval [a,b], is given by:
![A = (1)/(b-a) \int_(a)^(b) f(x) dx](https://img.qammunity.org/2022/formulas/mathematics/college/r2pdzr124f4hxtrs1nq3aw6jyorlci5i4e.png)
In this case:
Function
, interval with
![a = 0,b = 700](https://img.qammunity.org/2022/formulas/mathematics/college/wnamqnakqejuisx5bgf4ib11n5mookubpx.png)
So
![A = (1)/(700) \int_(0)^(700) 20000+10x dx](https://img.qammunity.org/2022/formulas/mathematics/college/jz5hm6uvrp8hterf6mxaww6hfm8a1vs2l4.png)
![A = (1)/(700) (20000x+5x^2)|_(0)^(700)](https://img.qammunity.org/2022/formulas/mathematics/college/f4nlbohfrilidva4vnplj90wdnt2n9dhmb.png)
So
![A = (20000(700)+5(700)^2)/(700) = 23500](https://img.qammunity.org/2022/formulas/mathematics/college/t6u80ebgrrxrt4j8qtk6cl91eaxkbajgxe.png)
The average value of the cost function over the interval is of $23,500.