240,368 views
18 votes
18 votes
The 4th and the last terms of an A.P. are 11 and 89 respectively. If there are 30 terms in the A.P., find the A.P. and its 23rd term.​

User Jwdehaan
by
3.0k points

1 Answer

18 votes
18 votes


\underline{\underline{\large\bf{Given:-}}}


\red{\leadsto}\:
\textsf{}
\sf Number \: of \:terms \: in \: A.P,n = 30


\red{\leadsto}\:
\textsf{}
\sf Fourth \: term ,a_4 = 11


\red{\leadsto}\:
\textsf{}
\sf last\:term, a_(30) = 89


\underline{\underline{\large\bf{To Find:-}}}


\orange{\leadsto}\:
\textsf{ }
\sf The \: A.P.


\orange{\leadsto}\:
\textsf{ }
\sf 23rd\: term, a_(23)


\\


\underline{\underline{\large\bf{Solution:-}}}\\

The nth term of A.P is determined by the formula-


\green{ \underline { \boxed{ \sf{a_n = a+(n-1)d}}}}

where


  • \sf a = first \:term

  • \sf a_n = nth \: term

  • \sf n = number \:of \:terms

  • \sf d = common \: difference

Since ,


\sf a_4 = 11


\longrightarrow
\sf a+(4-1) d= 11


\longrightarrow
\sf a+3d= 11\_\_\_(1)


\sf a_(30)= 89


\longrightarrow
\sf a+(30-1)d=89


\longrightarrow
\sf a+29d= 89\_\_\_(2)

Subtracting equation (1) from equation(2)


\begin{gathered}\\\implies\quad \sf a+29d-(a+3d) = 89-11 \\\end{gathered}


\begin{gathered}\\\implies\quad \sf a+29d-a-3d = 78 \\\end{gathered}


\begin{gathered}\\\implies\quad \sf a-a+29d-3d = 78 \\\end{gathered}


\begin{gathered}\\\implies\quad \sf 26d = 78 \\\end{gathered}


\begin{gathered}\\\implies\quad \sf d = (78)/(26) \\\end{gathered}


\begin{gathered}\\\implies\quad \sf d = 3 \\\end{gathered}

Putting the value of d in equation (1) -


\begin{gathered}\\\implies\quad \sf a+3(3) = 11 \\\end{gathered}


\begin{gathered}\\\implies\quad \sf a = 11-9 \\\end{gathered}


\begin{gathered}\\\implies\quad \sf a = 2 \\\end{gathered}

  • First term of A.P, a = 2

  • Second term of A.P.,
    \sf a_2= 2+(2-1)* 3


\quad\quad\quad\sf =2+3


\quad\quad\quad\sf =5

  • Third term of A.P.,
    \sf a_3= 2+(3-1)* 3


\quad\quad\quad\sf =2+6


\quad\quad\quad\sf =8


\longrightarrowThus , The A.P is 2,5,8,. . . . . .

Now,


\begin{gathered}\\\implies\quad \sf a_n = a+(n-1)d \\\end{gathered}


\begin{gathered}\\\implies\quad \sf a_(23 )= 2+(23-1)* 3 \\\end{gathered}


\begin{gathered}\\\implies\quad \sf a_(23) = 2+22 * 3 \\\end{gathered}


\begin{gathered}\\\implies\quad \sf a_(23) = 2+66 \\\end{gathered}


\begin{gathered}\\\implies\quad \sf a_(23) = 68 \\\end{gathered}


\longrightarrowThus , 23rd term is 68.

User Zhichao
by
2.7k points