Answer:
The probability that exactly 12 buyers would prefer green
=0.00555
Explanation:
We are given that
p=50%=50/100=0.50
n=14
We have to find the probability that exactly 12 buyers would prefer green.
q=1-p
q=1-0.50=0.50
Using binomial distribution formula
![P(X=x)=nC_r p^r q^(n-r)](https://img.qammunity.org/2022/formulas/mathematics/college/rvbyo71g9r5c0tdihp890h1l86mvl67yej.png)
![P(x=12)=14C_(12)(0.50)^(12)(0.50)^(14-12)](https://img.qammunity.org/2022/formulas/mathematics/college/en8rf2acpspd86638jujtwxjy0twgwp1el.png)
![P(x=12)=14C_(12)(0.50)^(12)(0.50)^2](https://img.qammunity.org/2022/formulas/mathematics/college/agtezirmhdt7n7ubpcq02kzpzioufachf4.png)
![P(x=12)=14C_(12)(0.50)^(14)](https://img.qammunity.org/2022/formulas/mathematics/college/a9mepac6rwc38h0l0f06vjm1mxzzyxjq9v.png)
![P(x=12)=(14!)/(12!2!)(0.50)^(14)](https://img.qammunity.org/2022/formulas/mathematics/college/r6zj3tgp9bzug08uh5vi95tej5de3scb9v.png)
![P(x=12)=(14* 13* 12!)/(12!2* 1)(0.50)^(14)](https://img.qammunity.org/2022/formulas/mathematics/college/7ica6831g5nnoisecp9domxahduvp7wpzt.png)
![P(x=12)=91\cdot (0.50)^(14)](https://img.qammunity.org/2022/formulas/mathematics/college/s6x4aqfvp876ivqmzzg7oll36xopyu1c3t.png)
![P(x=12)=0.00555](https://img.qammunity.org/2022/formulas/mathematics/college/m92lclwsg36ij6t28o3opor2yssh4hph2l.png)
Hence, the probability that exactly 12 buyers would prefer green
=0.00555