134k views
0 votes
using the formula of Sin 2A ,cos2a and tan 2a establish that; tab A is = +- root under 1 - cos 2A by 1 + cos 2a​

using the formula of Sin 2A ,cos2a and tan 2a establish that; tab A is = +- root under-example-1
User MGP
by
4.5k points

1 Answer

1 vote

Answer:

Explanation:

Given identity is,


\text{tanA}=\pm\sqrt{\frac{1-\text{cos2A}}{1+\text{cos2A}}}

To prove this identity, we will take left side of the identity,


\pm\sqrt{\frac{1-\text{cos2A}}{1+\text{cos2A}}}=\pm\sqrt{\frac{1-(1-2\text{sin}^2A)}{1+(2\text{cos}^2A-1)} }


=\pm\sqrt{\frac{1-1+2\text{sin}^2A}{1+2\text{cos}^2A-1} }


=\pm\sqrt{\frac{2\text{sin}^2A}{2\text{cos}^2A} }


=\pm(\sqrt{\text{tan}^2A})


=\text{tanA} [Right side of the identity]

Hence, proved.

User Zaxter
by
4.8k points