Answer:
Given That:
![{ \large\longrightarrow { \rm{z = {x}^(2) + {y}^(2) }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sarqjnswq1iq6fia44mbnuuujukgsxzyz0.png)
Partial differentiating both sides with respect to x, we get:
![{ \large\longrightarrow { \rm{ (∂z)/(∂x) = 2x}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/75edhjsbm8nyntkpw3pjepit6zc3tegbhd.png)
Partial differentiating again with respect to x, we get:
![{ \large\longrightarrow {{ \rm{ \frac{ {∂}^(2)z }{∂ {x}^(2) } \: = 2 \: \: \: \: \quad -(i) }}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qc275f2w4k2oec69lsmgs4hu5x7qmhefgy.png)
Consider again:
![{ \large\longrightarrow {{ \rm{ z = {x}^(2) + {y}^(2) }}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1kus302p8c0416actldrhnf16wtczj4w2i.png)
Partial differentiating both sides with respect to y, we get:
![{ \large\longrightarrow { { \rm{ (∂z)/(∂y) = 2y}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fori6h6vngggf0cqpvvtsk0jbvm9u1pxsf.png)
Now, partial differentiating both sides with respect to x, we get:
![{ \large\longrightarrow{ \rm{ \frac{ {∂}^(2)z }{∂x \:∂y } = 0 \: \: \: \quad - (ii) }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yr7qft1fp70pklog5kskir7iwfjans70bx.png)
Consider again:
![{ \large\longrightarrow { \rm{ (∂z)/(∂y) = 2y}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/315dnd0kq4vwfifz6kjae7obo3g70e6rxi.png)
Partial differentiating both sides with respect to y, we get:
![{ \large\longrightarrow{ \rm{ \frac{ {∂}^(2)z }{∂ {y}^(2) } = 2 \: \: \: \: \: \quad - (iii) }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rcr9u0c1njmxvztzefx84hcqt84znry9i3.png)
Now, consider Left Hand Side, we get:
![{ \large{ \rm{ \longrightarrow {x}^(2) \frac{ {∂}^(2)z }{∂ {x}^(2) } + 2xy \frac{ {∂}^(2) x}{∂x \:∂y } + {y}^(2) \frac{ {∂}^(2)z }{∂ {y}^(2) } }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fah0a0be0m7asup3jeksbze355oegtxfnc.png)
From Equation (i),(ii) and (iii), we can write:
![\longrightarrow{ \large{ \rm{ {2x}^(2) + 0 + {2y}^(2) }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gueu0iodvg0vjov1qfznv48vxvzk6xamcl.png)
![\longrightarrow \: { \large{ \rm{2( {x}^(2) + {y}^(2) ) }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/62yyq1awijkaiskydtynj0t96lto4txho7.png)
![\longrightarrow{ \large{ \rm{2z}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/uvj0ht3zyixv888rc6r8jdql4cq3atoxgi.png)
Therefore,
![{ \large{\longrightarrow \: { \rm{{x}^(2) \frac{ {∂}^(2) z}{∂ {x}^(2) } + 2xy \frac{ {∂}^(2)x }{∂x \:∂y } + {y}^(2) \frac{ {∂}^(2)z }{∂ {y}^(2) } = 2z }}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ota9g4bjgu7drxr7vo4zn4n4qzs5j4886c.png)
Hence Proved!!
![\:](https://img.qammunity.org/2023/formulas/mathematics/college/2ggh1nmemdo9eckwr4kv18nc6ebnpn2pop.png)
Learn More:-
![\boxed{\begin{array}c\bf f(x)&\bf(d)/(dx)f(x)\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf0\\ \\ \sf sin(x)&\sf cos(x)\\ \\ \sf cos(x)&\sf-sin(x)\\ \\ \sf tan(x)&\sf{sec}^(2)(x)\\ \\ \sf cot(x)&\sf-{cosec}^(2)(x)\\ \\ \sf sec(x)&\sf sec(x)tan(x)\\ \\ \sf cosec(x)&\sf-cosec(x)cot(x)\\ \\ \sf√(x)&\sf(1)/(2√(x))\\ \\ \sf log(x)&\sf(1)/(x)\\ \\ \sf{e}^(x)&\sf{e}^(x)\end{array}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w7appc6wjwr7qldkvttujewwp28coj9hve.png)