35.9k views
3 votes
Given points A(-1, -2) and B(2, 4) where AP: BP=1:2, find the locus of point P.​

User Tracey
by
4.2k points

1 Answer

3 votes

Answer:


x^2 + 4x + y^2 +8y = 0

Explanation:

Given


A = (-1,-2)


B = (2,4)


AP:BP = 1 : 2

Required

The locus of P


AP:BP = 1 : 2

Express as fraction


(AP)/(BP) = (1)/(2)

Cross multiply


2AP = BP

Calculate AP and BP using the following distance formula:


d = √((x - x_1)^2 + (y - y_1)^2)

So, we have:


2 * √((x - -1)^2 + (y - -2)^2) = √((x - 2)^2 + (y - 4)^2)


2 * √((x +1)^2 + (y +2)^2) = √((x - 2)^2 + (y - 4)^2)

Take square of both sides


4 * [(x +1)^2 + (y +2)^2] = (x - 2)^2 + (y - 4)^2

Evaluate all squares


4 * [x^2 + 2x + 1 + y^2 +4y + 4] = x^2 - 4x + 4 + y^2 - 8y + 16

Collect and evaluate like terms


4 * [x^2 + 2x + y^2 +4y + 5] = x^2 - 4x + y^2 - 8y + 20

Open brackets


4x^2 + 8x + 4y^2 +16y + 20 = x^2 - 4x + y^2 - 8y + 20

Collect like terms


4x^2 - x^2 + 8x + 4x + 4y^2 -y^2 +16y + 8y + 20 - 20 = 0


3x^2 + 12x + 3y^2 +24y = 0

Divide through by 3


x^2 + 4x + y^2 +8y = 0

User Hallexcosta
by
5.2k points