Answer:
Length of the rectangular lot = 60 meters
Width of the rectangular lot = 30 meters
Explanation:
Let the width of the rectangular lot be x meters.
So, Length of the same = 2x metres.
![A(rectangular \:lot) = (2x)(x)](https://img.qammunity.org/2023/formulas/mathematics/college/tpt5yldrc8eeuk22q0zxerhobktzj6tt40.png)
![\implies A(rectangular \:lot) = 2x^2](https://img.qammunity.org/2023/formulas/mathematics/college/cjly2an48riz12qnf2kvc3m1s8d1hlniz1.png)
When length is increasEd by 40 m and width by 6 m. Then....
New length =
![(2x + 40) \:m](https://img.qammunity.org/2023/formulas/mathematics/college/tgtbk846dirif5z8t42r2eufw7xnu8n99o.png)
New width =
![(x + 6) \:m](https://img.qammunity.org/2023/formulas/mathematics/college/laidvkwhkf4489k12on57k9sncfz3lgsu7.png)
According to the question:
![(2x + 40)(x + 6) = 2(2x^2)](https://img.qammunity.org/2023/formulas/mathematics/college/szoe8imugzhp9x0cfzbw2b5ylhpgbpfjlt.png)
![\implies 2x(x + 6) + 40(x + 6) - 4x^2=0](https://img.qammunity.org/2023/formulas/mathematics/college/ub5c7yk6v4iw5ua0y2oevzu0uuq3ujz62b.png)
![\implies 2x^2+12x + 40x + 240 - 4x^2=0](https://img.qammunity.org/2023/formulas/mathematics/college/21ixyvan6mmwzo6w7tfw5vhst63uxm4r2m.png)
![\implies 2x^2- 4x^2+12x + 40x + 240 =0](https://img.qammunity.org/2023/formulas/mathematics/college/w3iedj2h8p7f6q5nbbrsf1tzjsag8asmps.png)
![\implies -2x^2+52x + 240 =0](https://img.qammunity.org/2023/formulas/mathematics/college/fyjn0nv6f5i5t44vgf643ca0s8rwok7jfp.png)
![\implies 2(x^2-26x - 120) =0](https://img.qammunity.org/2023/formulas/mathematics/college/yryx5n6v1y6mcba82i4luo5zixn9ntjqmg.png)
![\implies x^2-26x - 120=0](https://img.qammunity.org/2023/formulas/mathematics/college/iv16p8rhpvoitf5ikw93rad1coia8566co.png)
![\implies x^2-30x+4x - 120=0](https://img.qammunity.org/2023/formulas/mathematics/college/20b52amoobuf0594z353j6123l9w345aa4.png)
![\implies x(x-30)+4(x - 30)=0](https://img.qammunity.org/2023/formulas/mathematics/college/33i8t4yqpe3c3p6ukskllqrjv2mekdbf1w.png)
![\implies (x-30)(x+4)=0](https://img.qammunity.org/2023/formulas/mathematics/college/1ipe6t3lwu4zc70a52ldxyqhtwk99i12qq.png)
![\implies x-30=0,\: x+4=0](https://img.qammunity.org/2023/formulas/mathematics/college/e1xox5w8lvmeawbf9r1rs3ee6yl0u9zrok.png)
![\implies x=30,\: x=-4](https://img.qammunity.org/2023/formulas/mathematics/college/yks5zuv1mgnec2bxgyfnxei0j58shry1xr.png)
Since, x represents the side length, so its value can't be negative.
![\implies x=30](https://img.qammunity.org/2023/formulas/mathematics/college/gmtzgqgt83thb2nng1obzlp6od6b9bin8o.png)
![\implies 2x=2(30)=60](https://img.qammunity.org/2023/formulas/mathematics/college/tnx6sjpjiqbj4z3vrdz59xo7709tgnk98r.png)
Thus,
Length of the rectangular lot = 60 meters
Width of the rectangular lot = 30 meters