Answer:
Range:
UCL = 4.73
LCL = 18.08
MEAN :
UCL = 27.115
LCL = 31.219
Explanation:
Given the data:
The mean and range of each sample :
Sample __ Thread wear __ xbar __ R
1 ___31 __ 42 ___ 28 ____ 33.67 _14
2___ 26 _ 18 ____35____ 26.33 _17
3___25 __30 ___ 34____29.67 _ 9
4 __ 17 __ 25 ___ 21 _____ 21 ___ 8
5 __ 38 _ 29 ___ 35 _____ 34 __ 9
6 __ 41 __42 ___36 _____39.67_ 6
7 __ 21 __ 17 ___29 _____22.33 _12
8 __ 32 __26___28 ____ 28.67 _ 6
9 __ 41 __ 34 __ 33 ______ 36 __8
10__29___17___30 _____25.33_ 13
11 __26 __ 31 __ 40 _____32.33_ 14
12__23 __ 19 __ 45 _____12.33 __6
13 __17 __ 24 __ 32_____24.33__15
14 __43__ 35___17_____ 31.67 _ 26
15__18 ___25__ 29_____ 24 ___ 11
16__30___42___31 ____34.33__ 12
17__28___36 __ 32____ 32 ____8
18__40 __ 29 __ 31 ____33.33 __ 11
19__18 ___29__ 28____ 25 ____11
20_ 22 __ 34 __ 26 ___ 27.33 __12
Size per sample, sample size, n = 3
Number of samples, k = 20
We calculate the sample mean and range average :
Sample mean, x-- = Σxbar/n = 29.167
Range average, Rbar = ΣR/n = 11.4
The mean control limit :
x-- ± A2Rbar
From the x chart ;
A2 for n = 20 is A2 = 0.180
29.167 ± 0.180(11.40)
LCL = 29.167 - 0.180(11.40) = 27.115
UCL = 29.167 + 0.180(11.40) = 31.219
The Range control limit :
Rbar(1 ± 3(d3/d2))
From the R-chart :
d2 at n = 20 ; d2 = 3.735
d3 at n = 20 ; d3 = 0.729
LCL = 11.40(1 - 3(0.729/3.735)) = 4.725
UCL = 11.40(1 + 3(0.729/3.735)) = 18.075