Answer:
upper bound for the error, | Error | ≤ 0.0032
Explanation:
Given the data in the question;
< e < 3
Using Taylor's Error bound formula
| Error | ≤ ( m / ( N + 1 )! )
![| x-a |^{N+1](https://img.qammunity.org/2022/formulas/mathematics/college/5ho2ut5ekzqgxgvi3m4ftr88cf1v79durr.png)
where m =
![| f^(N+1 )(x) |](https://img.qammunity.org/2022/formulas/mathematics/college/a6x2supy3cx0o8yhnvkgfeakuzbxn3oli9.png)
so we have
| Error | ≤ ( 3 / ( 3 + 1 )! )
-0.4
⁴
| Error | ≤ ( 3 / 4! )
-0.4
⁴
| Error | ≤ ( 3 / 24 )
-0.4
⁴
| Error | ≤ ( 0.125 )
-0.0256
![|](https://img.qammunity.org/2022/formulas/mathematics/college/nh7yoqfagw1uxifldpnkbp35xsqy9s99oa.png)
| Error | ≤ ( 0.125 ) 0.0256
| Error | ≤ 0.0032
Therefore, upper bound for the error, | Error | ≤ 0.0032