99.0k views
4 votes
Use the binomial series to expand the function as a power series. Find the radius of convergence.

x/ â 9+ x^2

1 Answer

3 votes

Answer:

Explanation:

The given function is:


f(x) = (x)/(√(9+x^2))

Using the binomial series:


= x(9+x^2)^(-1/2) \\ \\ = x *9^(-1/2)(1+(x^2)/(9))^(-1/2) \\ \\ = (x)/(3)(1+ (x^2)/(9))^(-1/2)


= (x)/(3) \sum \limits ^(\alpha )_(n=0)(^{-(1)/(2)}_n)((x^2)/(9))^n


\implies (x)/(3)\Bigg [ 1 + (-(1)/(2))*((x^2)/(9))+ ((-(1)/(2))(-(1)/(2)-1))/(2!)((x^2)/(9)) ^2 + ((-(1)/(2))(-(1)/(2)-1) (-(1)/(2)-2))/(3!) ) ((x^2)/(9)) ^3+ ... \Bigg ]


= (x)/(3)\Bigg [ 1 - (x^2)/(18)+ (3)/(5832)*(x^4)/(1)-(15)/(34992)x^6+... \Bigg ]


\mathbf{= (x)/(3)- (x^3)/(54)+ (1)/(5832)x^4 - (5)/(34992)x^7 + ...}

To compute the radius of convergence:


f(x) = (\lambda )/(3) \sum \limits ^(\alpha )_(n=0) (1+(x^2)/(9))^(-1/2)


f(x) = (\lambda )/(3) \sum \limits ^(\alpha )_(n=0) (^(-1/2) _n ) ((x^2)/(9))^n \\ \\ \implies (\lambda )/(3) \sum \limits ^(\alpha )_(n=0) (^(-1/2) _n ) ((x^2)/(9))^n \\ \\ \implies \sum \limits ^(\alpha)_(n=0) (^(-1/2) _n ) (1)/(3*9^n)*x^(2n) \\ \\ \implies \sum \limits ^(\alpha)_(n=0) (^(-1/2) _n ) (1)/(3^(2n+1))*x^(2n)

Suppose
a_n = (^(-1/2)_(n))*(1)/(3^(2n+1))*x^(2n)

Then, rewriting the equation above as:


a_(n+1) = (^(-1/2)_(n+1))*(1)/(3^(2n+3))*x^(2n+2)

As such;


\lim_(n \to x) \Big| (a_n+1)/(a_n) \Big| = \lim_(n \to x) \Bigg | ( (^(-1/2)_(n+1)) (x^(2n+2))/(3^(2n+3)) )/((^(-1/2)_(n) )(x^2)/(3^(2n+1)))} \Bigg |


\implies \lim_(n \to \alpha) \Bigg | ( (^(-1/2)_(n+1)) (x^(2))/(3^(2)) )/((^(-1/2)_(_n) )) \Bigg |


\implies \lim_(n \to \alpha) \Bigg | (((-1/2)!)/((-1/2-n -1)!(n+1)!)*(x^2)/(9) )/( ((-1/2!))/((-1/2-n)!(n!)) ) \Bigg| \\ \\ \\ \implies \lim_(n \to \alpha) \Bigg | ((-1/2 -n)! (n!) )/((-1/2 -n-1)! (n+1)! ) *(x^2)/(9) \Bigg| \\ \\ \\ \implies \lim_(n \to \alpha) \Bigg | ((-1/2 -n) (-1/2 -n-1)! \ n! )/((-1/2 -n-1)! (n+1) n! ) *(x^2)/(9) \Bigg|


\implies \lim_(n \to \alpha) \Bigg | ((-1/2 -n))/(n+1 ) *(x^2)/(9) \Bigg|


\implies \lim_(n \to \alpha) \Bigg | (n( -(1)/(2n -1 ) ) )/(n(1+(1)/(n)) ) *(x^2)/(9) \Bigg| \\ \\ \\ \implies \Big| (x^2)/(9) \Big| \lim_(n \to \alpha) \Big | (-(1)/(2n) -1)/(1+ (1)/(n)) \Big| \\ \\ \implies | (x^2)/(9)| |(0-1)/(1)|


\implies | (x^2)/(9)|

However, the series converges if and only if:


| (x^2)/(9)| < 1


(|x^2|)/(9) < 1


=x^2< 9 \\ \\ = < √(9) \\ \\ = \mathbf{ < 3}

User Czioutas
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories