Answer:
The standard deviation for the sample mean distribution=0.603
Explanation:
We are given that
Mean,
![\mu=63](https://img.qammunity.org/2022/formulas/mathematics/college/gfsmb3udclgib7d4d5ecahcv23bl0pua5l.png)
Standard deviation,
![\sigma=4](https://img.qammunity.org/2022/formulas/mathematics/college/womiy66xeq16yf89a5hhgzrcxyd9v6exib.png)
n=44
We have to find the standard deviation for the sample mean distribution using Central Limit Theorem for Means.
Standard deviation for the sample mean distribution
![\sigma_x=(\sigma)/(√(n))](https://img.qammunity.org/2022/formulas/mathematics/college/iof4s7t8ghv3ni6hm2ncstahqwo36rmg3s.png)
Using the formula
![\sigma_x=(4)/(√(44))](https://img.qammunity.org/2022/formulas/mathematics/college/lw1q6zxoug5srw89vh68advtb3uz6imdig.png)
![\sigma_x=(4)/(√(2* 2* 11))](https://img.qammunity.org/2022/formulas/mathematics/college/i37xjyqnijn7xjo4sa8szxyuc5uar9ss2s.png)
![\sigma_x=(4)/(2√(11))](https://img.qammunity.org/2022/formulas/mathematics/college/516ihi0qcprp05oynv12wt48f4dmp7din2.png)
![\sigma_x=(2)/(√(11))](https://img.qammunity.org/2022/formulas/mathematics/college/c99ibz97xthow3porrk34vgqjz769ymsjy.png)
![\sigma_x=0.603](https://img.qammunity.org/2022/formulas/mathematics/college/aw6ikvzbu4epr0pjmgrceco7rbfxh4u02k.png)
Hence, the standard deviation for the sample mean distribution=0.603