Consider the below figure attached with this question.
Given:
The transformation is:
![f(x,y)=(-2x,-3y+1)](https://img.qammunity.org/2022/formulas/mathematics/college/yv3yhdbcm47aqn2ctrrsmtlbtjzxh7h3ov.png)
The range is (4,-2), (2, −5), (−6, 4).
To find:
The domain of the transformation.
Solution:
We have,
![f(x,y)=(-2x,-3y+1)](https://img.qammunity.org/2022/formulas/mathematics/college/yv3yhdbcm47aqn2ctrrsmtlbtjzxh7h3ov.png)
For the point (4,-2),
![(-2x,-3y+1)=(4,-2)](https://img.qammunity.org/2022/formulas/mathematics/college/2go8bkh3n2bwpj1ov4ehidwv3651es5bjg.png)
On comparing both sides, we get
![-2x=4](https://img.qammunity.org/2022/formulas/mathematics/college/xo7e86zmpnwst2axt51o0o3qkriyyqmfhc.png)
![x=(4)/(-2)](https://img.qammunity.org/2022/formulas/mathematics/college/g85tiepu2dhysogp06wdkgkj8ydhbf44t6.png)
![x=-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/3zhznv731yzgv6hqbmimou3gi2e79n05zg.png)
And,
![-3y+1=-2](https://img.qammunity.org/2022/formulas/mathematics/college/xj2eumwcrb6udnrb5rp8ri7gkb94vo82sd.png)
![-3y=-2-1](https://img.qammunity.org/2022/formulas/mathematics/college/mwupfacocxmfgt9imruwlhwwyycydhqff3.png)
![-3y=-3](https://img.qammunity.org/2022/formulas/mathematics/college/gw0qbv42gvgq2tprxulgfw44isqwvx26bc.png)
![y=(-3)/(-3)](https://img.qammunity.org/2022/formulas/mathematics/college/7j5xqtrfni8stp4o5vxv1agp56wd7ig2sa.png)
![y=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/5s9fjdvwe9tnqjs3okg03dzqg5u4dt28lz.png)
So, the domain of (4,-2) is (-2,1).
Similarly,
For the point (2,-5),
![(-2x,-3y+1)=(2,-5)](https://img.qammunity.org/2022/formulas/mathematics/college/saz9q7d8221zb2ip0mmvhcsvwqn5zgusi9.png)
On comparing both sides, we get
. So, the domain of (2,-5) is (-1,2).
For the point (-6,4),
![(-2x,-3y+1)=(-6,4)](https://img.qammunity.org/2022/formulas/mathematics/college/ayop5n4at0ea1imf6ixogw5jku98hrbole.png)
On comparing both sides, we get
. So, the domain of (-6,4) is (3,-1).
So, the domain of the given transformation is (-2, 1), (-1, 2), (3, -1).
Therefore, the correct option is A.