Answer:
See attachment for graph
The height of the arch is: 120 m
The width to the nearest meter, at the base of the arch is 22 m
Explanation:
Given
![h = -0.06d^2 + 120](https://img.qammunity.org/2022/formulas/mathematics/college/ppvt9q60ltdcb09w6yc5md9u4cg15ql4m1.png)
Solving (a): The graph
See attachment for graph
Variable h is plotted on the vertical axis while variable d is plotted on the horizontal axis.
Solving (b): The height
The curve of
opens downward. So, the maximum point on the vertical axis represents the height of the arch,
Hence:
![height = 120](https://img.qammunity.org/2022/formulas/mathematics/college/xe7laclxaetic6fwp0rr5fvfv90cq5mjsm.png)
Solving (c): The width
The curve touches the horizontal axis at two different points.
![x_1 = -11](https://img.qammunity.org/2022/formulas/mathematics/college/tkfq6qdsl939hveg5xv9n2iius6rf64xuh.png)
![x_2 = 11](https://img.qammunity.org/2022/formulas/mathematics/college/yyybg2mh6er1v8ys1nebsqlugzgi24kmxk.png)
The absolute difference of both points represents the width.
So:
![Width = |x_2 - x_1|](https://img.qammunity.org/2022/formulas/mathematics/college/ix0htkj20b7ql103i91c0u3nf139xk8bos.png)
![Width = |11 - -11|](https://img.qammunity.org/2022/formulas/mathematics/college/808gm1w6ni2hcztraooyv8xjwsfzsyq3lb.png)
![Width = |11 +11|](https://img.qammunity.org/2022/formulas/mathematics/college/xvctgdufy01yjqhtuycohfijctqcawafb9.png)
![Width = |22|](https://img.qammunity.org/2022/formulas/mathematics/college/3jl0onmlzn937pudeofe5ji8zeec48tour.png)
Hence:
![Width = 22](https://img.qammunity.org/2022/formulas/mathematics/college/xk0px12qxjr6zfid2qa0egk6jfj5zz4rwi.png)