141k views
5 votes
Solve the attachment...​

Solve the attachment...​-example-1
User Luiz
by
7.4k points

1 Answer

1 vote

Answer:

2 ( Option A )

Explanation:

The given integral to us is ,


\longrightarrow \displaystyle \int_0^1 5x √(x)\ dx

Here 5 is a constant so it can come out . So that,


\longrightarrow \displaystyle I = 5 \int_0^1 x √(x)\ dx

Now we can write √x as ,


\longrightarrow I = \displaystyle 5 \int_0^1 x . x^{(1)/(2)} \ dx

Simplify ,


\longrightarrow I = 5 \displaystyle \int_0^1 x^{(3)/(2)}\ dx

By Power rule , the integral of x^3/2 wrt x is , 2/5x^5/2 . Therefore ,


\longrightarrow I = 5 \bigg( (2)/(5) x^{(5)/(2)} \bigg] ^1_0 \bigg)

On simplifying we will get ,


\longrightarrow \underline{\underline{ I = 2 }}

User Chenyang
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories