(b) Use Newton's second law. The net forces on block M are
• ∑ F (horizontal) = T - f = Ma … … … [1]
• ∑ F (vertical) = n - Mg = 0 … … … [2]
where T is the magnitude of the tension, f is the mag. of kinetic friction between block M and the table, a is the acceleration of block M (but since both blocks are moving together, the smaller block m also shares this acceleration), and n is the mag. of the normal force between the block and the table.
Right away, we see n = Mg, and so f = µn = 0.2Mg.
The net force on block m is
• ∑ F = mg - T = ma … … … [3]
You can eliminate T and solve for a by adding [1] to [3] :
(T - 0.2Mg) + (mg - T ) = Ma + ma
(m - 0.2M) g = (M + m) a
a = (10 kg - 0.2 (20 kg)) (9.8 m/s²) / (10 kg + 20 kg)
a = 1.96 m/s²
We can get the tension from [3] :
T = m (g - a)
T = (10 kg) (9.8 m/s² - 1.96 m/s²)
T = 78.4 N
(c/d) No time duration seems to be specified, so I'll just assume some time t before block M reaches the edge of the table (whatever that time might be), after which either block would move the same distance of
1/2 (1.96 m/s²) t
(e) Assuming block M starts from rest, its velocity at time t is
(1.96 m/s²) t
(f) After t = 1 s, block M reaches a speed of 1.96 m/s. When the string is cut, the tension force vanishes and the block slows down due to friction. By Newton's second law, we have
∑ F = -f = Ma
The effect of friction is constant, so that f = 0.2Mg as before, and
-0.2Mg = Ma
a = -0.2g
a = -1.96 m/s²
Then block M slides a distance x such that
0² - (1.96 m/s²) = 2 (-1.96 m/s²) x
x = (1.96 m/s²) / (2 (1.96 m/s²))
x = 0.5 m
(I don't quite understand what is being asked by the part that says "calculate the time taken to contact block M and pulley" …)
Meanwhile, block m would be in free fall, so after 1 s it would fall a distance
x = 1/2 (-9.8 m/s²) (1 s)
x = 4.9 m