Answer:
The possible values are a = -2.5 or a = 4.5.
Explanation:
Composite function:
The composite function of f(x) and g(x) is given by:
![(f \circ g)(x) = f(g(x))](https://img.qammunity.org/2022/formulas/mathematics/college/6exlocp140lh1l1xpway3y55zflnvqb4t3.png)
In this case:
![f(x) = 4x^2 - 8x - 20](https://img.qammunity.org/2022/formulas/mathematics/college/xued1wfwk1sn5nhvqx40lcgr5vmy8eeu7u.png)
![g(x) = 2x + a](https://img.qammunity.org/2022/formulas/mathematics/college/joxzgqp29rxnx9lruexfrzihvdazozmgqc.png)
So
![(f \circ g)(x) = f(g(x)) = f(2x + a) = 4(2x + a)^2 - 8(2x + a) - 20 = 4(4x^2 + 4ax + a^2) - 16x - 8a - 20 = 16x^2 + 16ax + 4a^2 - 16x - 8a - 20 = 16x^2 +(16a-16)x + 4a^2 - 8a - 20](https://img.qammunity.org/2022/formulas/mathematics/college/khqopbi5n0ocndkfeclnxvl2zseo8u72ps.png)
Value of a so that the y-intercept of the graph of the composite function (fog)(x) is (0, 25).
This means that when
. So
![4a^2 - 8a - 20 = 25](https://img.qammunity.org/2022/formulas/mathematics/college/le33bhhmfuhvit515ic9plsuiuqucc6f8h.png)
![4a^2 - 8a - 45 = 0](https://img.qammunity.org/2022/formulas/mathematics/college/f3sg39xbienhy0hhshw7ysf1hxgelf3dxz.png)
Solving a quadratic equation, by Bhaskara:
![\Delta = (-8)^2 - 4(4)(-45) = 784](https://img.qammunity.org/2022/formulas/mathematics/college/8q1c6ub6u5n33oga23pas5qy0tz8z3z400.png)
![x_(1) = (-(-8) + √(784))/(2*(4)) = (36)/(8) = 4.5](https://img.qammunity.org/2022/formulas/mathematics/college/d78sgzzttf7bzmzt3ivl1am1mk8kugopod.png)
![x_(2) = (-(-8) - √(784))/(2*(4)) = -(20)/(8) = -2.5](https://img.qammunity.org/2022/formulas/mathematics/college/55u5it4eflq7uom8w03i5kzbbsj1cd2bt7.png)
The possible values are a = -2.5 or a = 4.5.