68.3k views
0 votes
Please help NO LINKS

Please help NO LINKS-example-1
User BinaryTofu
by
3.1k points

1 Answer

2 votes


\bar{x} = 0


\bar{y} =(136)/(125)

Explanation:

Let's define our functions
f(x)\:\text{and}\:g(x) as follows:


f(x) = x^2 + 1


g(x) = 6x^2

The two functions intersect when
f(x)=g(x) and that occurs at
x = \pm(1)/(5) so they're going to be the limits of integration. To solve for the coordinates of the centroid
\bar{x}\:\text{and}\:\bar{y}, we need to solve for the area A first:


\displaystyle A = \int_a^b [f(x) - g(x)]dx


\displaystyle \:\:\:\:\:\:\:=\int_{-(1)/(5)}^{+(1)/(5)}[(x^2 + 1) - 6x^2]dx


\displaystyle \:\:\:\:\:\:\:=\int_{-(1)/(5)}^{+(1)/(5)}(1 - 5x^2)dx


\displaystyle \:\:\:\:\:\:\:=\left(x - (5)/(3)x^3 \right)_{-(1)/(5)}^{+(1)/(5)}


\:\:\:\:\:\:\:= (28)/(75)

The x-coordinate of the centroid
\bar{x} is given by


\displaystyle \bar{x} = (1)/(A)\int_a^b x[f(x) - g(x)]dx


\displaystyle \:\:\:\:\:\:\:= (75)/(28)\int_{-(1)/(5)}^{+(1)/(5)} (x - 5x^3)dx


\:\:\:\:\:\:\:=(75)/(28)\left((1)/(2)x^2 -(5)/(4)x^4 \right)_{-(1)/(5)}^{+(1)/(5)}


\:\:\:\:\:\:\:= 0

The y-coordinate of the centroid
\bar{y} is given by


\displaystyle \bar{y} = (1)/(A)\int_a^b (1)/(2)[f^2(x) - g^2(x)]dx


\displaystyle \:\:\:\:\:\:\:=(75)/(28)\int_{-(1)/(5)}^{+(1)/(5)} (1)/(2)(-35x^4 + 2x^2 + 1)dx


\:\:\:\:\:\:\:=(75)/(56) \left[-7x^5 + (2)/(3)x^3 + x \right]_{-(1)/(5)}^{+(1)/(5)}


\:\:\:\:\:\:\:=(136)/(125)

User Oliver Metz
by
3.3k points