![\bar{x} = 0](https://img.qammunity.org/2022/formulas/mathematics/college/tj034ms2nt0ho5i4kwcp33422wb6r5qihb.png)
![\bar{y} =(136)/(125)](https://img.qammunity.org/2022/formulas/mathematics/college/l8mgta77cu4iqeaaku39xtbgsir3jut2r2.png)
Explanation:
Let's define our functions
as follows:
![f(x) = x^2 + 1](https://img.qammunity.org/2022/formulas/mathematics/college/pk30qa76572klqv9mo6e9jfnoe6c2gj76x.png)
![g(x) = 6x^2](https://img.qammunity.org/2022/formulas/mathematics/college/xj12a624wxjqa0tfy4i3cqt1klq19dsd3y.png)
The two functions intersect when
and that occurs at
so they're going to be the limits of integration. To solve for the coordinates of the centroid
, we need to solve for the area A first:
![\displaystyle A = \int_a^b [f(x) - g(x)]dx](https://img.qammunity.org/2022/formulas/mathematics/college/1ydwazsoxy358z3huwr3cjfgtfgtn169us.png)
![\displaystyle \:\:\:\:\:\:\:=\int_{-(1)/(5)}^{+(1)/(5)}[(x^2 + 1) - 6x^2]dx](https://img.qammunity.org/2022/formulas/mathematics/college/mqsycrma12wictvm0fdcmnra9q4yqk14ff.png)
![\displaystyle \:\:\:\:\:\:\:=\int_{-(1)/(5)}^{+(1)/(5)}(1 - 5x^2)dx](https://img.qammunity.org/2022/formulas/mathematics/college/uxrsntwnf023ym7vav7trwwugvdp33eiza.png)
![\displaystyle \:\:\:\:\:\:\:=\left(x - (5)/(3)x^3 \right)_{-(1)/(5)}^{+(1)/(5)}](https://img.qammunity.org/2022/formulas/mathematics/college/1xw6u27lu1mxkxv9u5emr50l0414g5pi8s.png)
![\:\:\:\:\:\:\:= (28)/(75)](https://img.qammunity.org/2022/formulas/mathematics/college/7rth0cy8vvsu4pg47gylpi82bvw3v2dd0t.png)
The x-coordinate of the centroid
is given by
![\displaystyle \bar{x} = (1)/(A)\int_a^b x[f(x) - g(x)]dx](https://img.qammunity.org/2022/formulas/mathematics/college/a03ga5u0bn734j34u2ab5or0stmfit6iyq.png)
![\displaystyle \:\:\:\:\:\:\:= (75)/(28)\int_{-(1)/(5)}^{+(1)/(5)} (x - 5x^3)dx](https://img.qammunity.org/2022/formulas/mathematics/college/f6pc2g9md44qezf1wrtfdb73bv2ylbebxj.png)
![\:\:\:\:\:\:\:=(75)/(28)\left((1)/(2)x^2 -(5)/(4)x^4 \right)_{-(1)/(5)}^{+(1)/(5)}](https://img.qammunity.org/2022/formulas/mathematics/college/53uqokltxxwriuhw0as0bkaswxdi8goowv.png)
![\:\:\:\:\:\:\:= 0](https://img.qammunity.org/2022/formulas/mathematics/college/9klr4qvzu6rjpj6bx21u17orf6o4ejnol2.png)
The y-coordinate of the centroid
is given by
![\displaystyle \bar{y} = (1)/(A)\int_a^b (1)/(2)[f^2(x) - g^2(x)]dx](https://img.qammunity.org/2022/formulas/mathematics/college/5y63co0vswi4pfdwawqu0uiehq96387vj8.png)
![\displaystyle \:\:\:\:\:\:\:=(75)/(28)\int_{-(1)/(5)}^{+(1)/(5)} (1)/(2)(-35x^4 + 2x^2 + 1)dx](https://img.qammunity.org/2022/formulas/mathematics/college/tok1f2vkp9u8rt94uz3r1l7gpyi9x6vhed.png)
![\:\:\:\:\:\:\:=(75)/(56) \left[-7x^5 + (2)/(3)x^3 + x \right]_{-(1)/(5)}^{+(1)/(5)}](https://img.qammunity.org/2022/formulas/mathematics/college/nho15qs7o82ssdin8xibinkyjk59r9ws2k.png)
![\:\:\:\:\:\:\:=(136)/(125)](https://img.qammunity.org/2022/formulas/mathematics/college/9e4msbso4euk1qr4t53rpd4eyjw0cgwu58.png)