145k views
0 votes
Find the solution of the differential equation that satisfies the given initial condition. (dP)/(dt)

User MattTriano
by
3.1k points

1 Answer

2 votes

Answer:


P = ((1)/(3)t^(3)/(2) + \sqrt 2 - (1)/(3))^2

Explanation:

Given


(dP)/(dt) = \sqrt{Pt


P(1) = 2

Required

The solution

We have:


(dP)/(dt) = \sqrt{Pt


(dP)/(dt) = (Pt)^(1)/(2)

Split


(dP)/(dt) = P^(1)/(2) * t^(1)/(2)

Divide both sides by
P^(1)/(2)


(dP)/( P^(1)/(2)*dt) = t^(1)/(2)

Multiply both sides by dt


(dP)/( P^(1)/(2)) = t^(1)/(2) \cdot dt

Integrate


\int (dP)/( P^(1)/(2)) = \int t^(1)/(2) \cdot dt

Rewrite as:


\int dP \cdot P^(-1)/(2) = \int t^(1)/(2) \cdot dt

Integrate the left hand side


\frac{P^{(-1)/(2)+1}}{(-1)/(2)+1} = \int t^(1)/(2) \cdot dt


\frac{P^{(-1)/(2)+1}}{(1)/(2)} = \int t^(1)/(2) \cdot dt


2P^{(1)/(2)} = \int t^(1)/(2) \cdot dt

Integrate the right hand side


2P^{(1)/(2)} = \frac{t^{(1)/(2) +1 }}{(1)/(2) +1 } + c


2P^{(1)/(2)} = \frac{t^{(3)/(2)}}{(3)/(2) } + c


2P^{(1)/(2)} = (2)/(3)t^(3)/(2) + c ---- (1)

To solve for c, we first make c the subject


c = 2P^{(1)/(2)} - (2)/(3)t^(3)/(2)


P(1) = 2 means


t = 1; P =2

So:


c = 2*2^{(1)/(2)} - (2)/(3)*1^(3)/(2)


c = 2*2^{(1)/(2)} - (2)/(3)*1


c = 2\sqrt 2 - (2)/(3)

So, we have:


2P^{(1)/(2)} = (2)/(3)t^(3)/(2) + c


2P^{(1)/(2)} = (2)/(3)t^(3)/(2) + 2\sqrt 2 - (2)/(3)

Divide through by 2


P^{(1)/(2)} = (1)/(3)t^(3)/(2) + \sqrt 2 - (1)/(3)

Square both sides


P = ((1)/(3)t^(3)/(2) + \sqrt 2 - (1)/(3))^2

User Priyanka
by
4.0k points