Answer:
![241^(257)\ mod\ 12 =1](https://img.qammunity.org/2022/formulas/mathematics/college/hvl4na4i95ctkzi0poz9rgebklzp5x7hdu.png)
![7 * 20 = 140](https://img.qammunity.org/2022/formulas/mathematics/college/ybtuqyiiwlh2cqys4dp7jiaul5bi0rmgjf.png)
![(1)/(700)](https://img.qammunity.org/2022/formulas/mathematics/college/7xvamkcvhdbxoib8jgdn244vemyy1l5sr0.png)
Explanation:
Solving (a): 241^257 mod 12
To do this, we simply calculate
![241\ mod\ 12](https://img.qammunity.org/2022/formulas/mathematics/college/akecfejjlilf8945adbxkluon1s4ehk0fh.png)
Because
![a\ mod\ b = a^n\ mod\ b](https://img.qammunity.org/2022/formulas/mathematics/college/kd878ad0w61r0m5xkbh7t0t2jtsiwz40so.png)
The highest number less than or equal to 241 that is divisible by 12 is 240; So:
![241\ mod\ 12 = 241- 240](https://img.qammunity.org/2022/formulas/mathematics/college/xlpktz48tx67035rhz49w47hhp50orim9b.png)
![241\ mod\ 12 =1](https://img.qammunity.org/2022/formulas/mathematics/college/vl6l43fowpl776jl4jbf6tfnsl6c77wf0p.png)
Hence:
![241^(257)\ mod\ 12 =1](https://img.qammunity.org/2022/formulas/mathematics/college/hvl4na4i95ctkzi0poz9rgebklzp5x7hdu.png)
Solving (b): 7 * 20
![7 * 20 = 140](https://img.qammunity.org/2022/formulas/mathematics/college/ybtuqyiiwlh2cqys4dp7jiaul5bi0rmgjf.png)
Solving (c): Multiplicative inverse of 7 in 719
The position of 7 in 719 is 700
So, the required inverse is 1/700 ---- i.e. we simply divide 1 by the number