Answer:
![(x+6)/(2x^2-9x+5)=-\sum_(n=0)^(\infty) [(-2)^(n)x^(n) + (x^(n))/(5^(n+1))]](https://img.qammunity.org/2022/formulas/mathematics/college/onvqwst1qq4u28dbowwrhtgxkytrgk01qu.png)
when:
![|x|<(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/i5ewaur5v5vjbvuh20615q3ugw67gxql6a.png)
Explanation:
In order to solve this problem, we must begin by splitting the function into its partial fractions, so we must first factor the denominator.
![(x+6)/(2x^2-9x+5)=(x+6)/((2x+1)(x-5))](https://img.qammunity.org/2022/formulas/mathematics/college/89yns8zoct0rd4uwptzg7y8b81yxc5dxdh.png)
Next, we can build our partial fractions, like this:
![(x+6)/((2x+1)(x-5))=(A)/(2x+1)+(B)/(x-5)](https://img.qammunity.org/2022/formulas/mathematics/college/fhtn4tmvcxc843fhn04vpsx7qpllikvyw4.png)
we can then add the two fraction on the right to get:
![(x+6)/((2x+1)(x-5))=(A(x-5)+B(2x+1))/((2x+1)(x-5))](https://img.qammunity.org/2022/formulas/mathematics/college/ni70imufa97ysycvtrqe6yt417nmzq2p2f.png)
Since we need this equation to be equivalent, we can get rid of the denominators and set the numerators equal to each other, so we get:
![x+6=A(x-5)+B(2x+1)](https://img.qammunity.org/2022/formulas/mathematics/college/g2h01b5kdmawrmb5fkgx6ydzo04l28ndgh.png)
and expand:
![x+6=Ax-5A+2Bx+B](https://img.qammunity.org/2022/formulas/mathematics/college/n64t4iowno2dfy74ytsbx29jpzl1yvx0rv.png)
we can now group the terms so we get:
![x+6=Ax+2Bx-5A+B](https://img.qammunity.org/2022/formulas/mathematics/college/c7xcuiqdzmuqm2iis7bcnai4y5etud794r.png)
![x+6=(Ax+2Bx)+(-5A+B)](https://img.qammunity.org/2022/formulas/mathematics/college/oadzhrrf6cntk76pjv780rv60mk6x8nysj.png)
and factor:
![x+6=(A+2B)x+(-5A+B)](https://img.qammunity.org/2022/formulas/mathematics/college/lm1a6cv7g686z42kosxll8q4l0nza960ln.png)
so we can now build a system of equations:
A+2B=1
-5A+B=6
and solve simultaneously, this one can be solved by substitution, so we get>
A=1-2B
-5(1-2B)+B=6
-5+10B+B=6
11B=11
B=1
A=1-2(1)
A=-1
So we can use these values to build our partial fractions:
![(x+6)/((2x+1)(x-5))=(A)/(2x+1)+(B)/(x-5)](https://img.qammunity.org/2022/formulas/mathematics/college/fhtn4tmvcxc843fhn04vpsx7qpllikvyw4.png)
![(x+6)/((2x+1)(x-5))=-(1)/(2x+1)+(1)/(x-5)](https://img.qammunity.org/2022/formulas/mathematics/college/b416e9tebmcp87hk13ro9qzqbjvavnr571.png)
and we can now use the partial fractions to build our series. Let's start with the first fraction:
![-(1)/(2x+1)](https://img.qammunity.org/2022/formulas/mathematics/college/ua846d2lyrx7xdt47q9243fxxo45i4se2l.png)
We can rewrite this fraction as:
![-(1)/(1-(-2x))](https://img.qammunity.org/2022/formulas/mathematics/college/5rv1n1c4z7gnmluchl0148ilzyr6ipgpoo.png)
We can now use the following rule to build our power fraction:
![\sum_(n=0)^(\infty) ar^(n) = (a)/(1-r)](https://img.qammunity.org/2022/formulas/mathematics/college/8paivg7tqj9nhmtodrr9gxdhhy63yomi81.png)
when |r|<1
in this case a=1 and r=-2x so:
![-(1)/(1-(-2x))=-\sum_(n=0)^(\infty) (-2x)^n](https://img.qammunity.org/2022/formulas/mathematics/college/3qae1mht1wl5exvps1xjztsy36a3zbco9f.png)
or
![-(1)/(1-(-2x))=-\sum_(n=0)^(\infty) (-2)^(n) x^(n)](https://img.qammunity.org/2022/formulas/mathematics/college/rjrwoyujltnayhnij07xx8773v3hvnxhte.png)
for: |-2x|<1
or:
![|x|<(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/i5ewaur5v5vjbvuh20615q3ugw67gxql6a.png)
Next, we can work with the second fraction:
![(1)/(x-5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/2x9em634cdj3tkoydbd7orbprnhjo2pafj.png)
On which we can factor a -5 out so we get:
![-(1)/(5(1-(x)/(5)))](https://img.qammunity.org/2022/formulas/mathematics/college/zkn6jkrupbxa5as5z0p9mlk9gyj2kp6wzf.png)
In this case: a=-1/5 and r=x/5
so our series will look like this:
![-(1)/(5(1-(x)/(5)))=-(1)/(5)\sum_(n=0)^(\infty) ((x)/(5))^n](https://img.qammunity.org/2022/formulas/mathematics/college/bvwif3iwqi0wgit8biwdm9k6192waj3een.png)
Which can be simplified to:
![-(1)/(5(1-(x)/(5)))=-\sum_(n=0)^(\infty) (x^n)/(5^(n+1))](https://img.qammunity.org/2022/formulas/mathematics/college/za28inh7kma9x2uxd9reezk50sdt97n9ur.png)
when:
![|(x)/(5)|<1](https://img.qammunity.org/2022/formulas/mathematics/college/j5a34s5dckah05xk3x0r3ztha5x1qsp9ls.png)
or
|x|<5
So we can now put all the series together to get:
![(x+6)/(2x^2-9x+5)=-\sum_(n=0)^(\infty) [(-2)^(n)x^(n) + (x^(n))/(5^(n+1))}](https://img.qammunity.org/2022/formulas/mathematics/college/cpvumxwkdtebqz89gvt18x3n7p7x4agi0a.png)
when:
![|x|<(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/i5ewaur5v5vjbvuh20615q3ugw67gxql6a.png)
We use the smallest interval of convergence for x since that's the one the whole series will be defined for.